首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current zero measurements are performed for 245 kV‐50 kA‐60 Hz short line fault (L90) interruption tests with a self‐blast interrupting chamber (double‐volume system) which has the interrupting capability up to 245 kV‐50 kA‐50 Hz L90. Lower L90 interruption capability is observed for longer arcing time although very high pressure rise is obtained. It may be caused by higher blowing temperature and lower blowing density for longer arcing time. Interruption criteria and an optimization method of the chamber design are discussed to improve L90 interruption capability with it. The new chambers are designed at 245 kV‐50 kA‐60 Hz to improve gas density in thermal volume for long arcing time. 245 kV‐50 kA‐60 Hz L90 interruptions are performed with the new chamber. The suggested optimization method is an efficient tool for the self‐blast interrupting chamber design although study of computing methods is required to calculate arc conductance around current zero as a direct criterion for L90 interruption capability with higher accuracy. © 2009 Wiley Periodicals, Inc. Electr Eng Jpn, 167(1): 9–17, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20743  相似文献   

2.
碳化硅是发展最为成熟的新型宽禁带半导体材料,且碳化硅功率器件近期已开始代替常规的硅基器件。以典型的±800 kV,额定电流为5 kA的高压直流输电工程为实例,建立了换流阀基本组件的电气模型,用PSCAD/EMTDC仿真软件搭建了换流器仿真电路,研究碳化硅晶闸管在高压直流换流阀中的应用。对基于碳化硅晶闸管和普通硅晶闸管的直流换流阀电气特性和损耗进行仿真结果比较。计算结果表明:用碳化硅晶闸管来代替传统的硅晶闸管,可以在不同的触发角和工况下大幅减少系统的功率损耗。最后估算了在直流工程中使用碳化硅晶闸管阀带来的经济效益。  相似文献   

3.
A high voltage thyristor valve is the basic component of an HVDC transmission system. Development of a 500 kV valve for next generation HVDC transmission systems is described. First, the power loss of the valve is analyzed to decide a reasonable wafer size for the light-triggered thyristor. From these results, a six inch diameter wafer size is selected. A light-triggered thyristor, with ratings of 8 kV and 3.5 kA, is developed using the six inch wafer. The design of the valve employing the thyristor and test results with a prototype valve prove that a 500 kV valve can be realized by this design method  相似文献   

4.
In order to study the basic performance of the superconducting generator in an actual electric power system, a quick response excitation‐type generator was connected to the 77‐kV commercial power grid of Kansai Electric Power Co., Inc. In the test, the model machine was operated as a rotary condenser supplying about leading 40 M Var to the electric power system. In the tests, the model machine operated stably. The results show that the superconducting generator has effects for stabilizing voltage fluctuations of electric power systems and also for reducing shunt reactor. © 2002 Wiley Periodicals, Inc. Electr Eng Jpn, 141(2): 17–24, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10053  相似文献   

5.
This paper deals with a 6.6‐kV transformerless STATCOM cascading multiple single‐phase H‐bridge PWM converters in each phase. The AC voltage of the STATCOM is almost sinusoidal, so that it requires no harmonic filter. Each converter is equipped with a capacitor and a voltage sensor on the DC side, which are electrically isolated from each other. The STATCOM has the capability of self‐starting and voltage‐balancing without any external power supply or equipment. Experiments using a three‐phase 200‐V, 10‐kVA laboratory system, along with computer simulations, are carried out to confirm the viability and effectiveness of the STATCOM. © 2009 Wiley Periodicals, Inc. Electr Eng Jpn, 170(1): 55–64, 2010; Published online in Wiley InterScience ( www.interscience.wiley. com ). DOI 10.1002/eej.20822  相似文献   

6.
Many research and development projects on high‐temperature superconducting apparatus such as a transformer, fault current limiter, and cable are being actively pursued in the power field as a result of performance improvement of Bi silver sheath high‐temperature superconducting (HTS) wire. HTS transformers are considered to be among the most promising applications in view of efficiency improvement, the interface with cryogenic cable and normal temperature devices, incombustibility, overload capability, the function as a reactor, and the possibility of use as a fault current limiter. The necessary technical development items of an HTS transformer in order to achieve performance superior to conventional devices are examined. For this purpose, three‐phase 66‐kV 100‐MVA transformers were designed for the comparison of an HTS transformer and a conventional one with oil cooling. The desirable development items are an HTS wire current density of about 40 A/mm2, an allowable winding strain of about 0.5%, a percent impedance of 7.5%, an air gap flux density of about 0.3 T, and AC losses of about 0.3 W/km‐A. © 2002 Wiley Periodicals, Inc. Electr Eng Jpn, 142(1): 25–31, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10087  相似文献   

7.
Recent progress in power electronics technology makes it possible to consider applying self‐commutated converters using gate turn‐off thyristors (GTOs) to HVDC transmission systems. Since the self‐commutated converter can be operated stably without depending on ac‐side voltage, the magnitude and the phase angle of the converter output voltage can be controlled independently. Therefore, this type of converter will improve voltage stability at its ac side. On the other hand, shaft torsional oscillation of a thermal power plant caused by the interaction between the shaft‐generator system and the control system of the self‐commutated converter is still an open problem. In this paper, a linearized model for eigenvalue analysis of a power system, including HVDC interconnection with self‐commutated converters, is described to analyze the effect of the self‐commutated converter on the shaft torsional oscillation of a thermal power plant. Then, numerical results from the eigenvalue analysis of the shaft torsional oscillation are presented. Results obtained by the frequency response method are also reported. The numerical results make it clear that parameter regions of DC‐AVR and ACR control systems of self‐commutated converters exist where the shaft torsional oscillation may be caused. © 1999 Scripta Technica, Electr Eng Jpn, 128(4): 25–37, 1999  相似文献   

8.
李侠  马振军 《高压电器》2012,(1):110-113
中国贵—广Ⅱ±500 kV高压直流输电工程中均采用激光脉冲直接触发晶闸管的直接光控晶闸管换流阀(以下简称LTT阀)。为了确保换流阀的安全可靠运行,对换流阀中的每个晶闸管用晶闸管电压监测电子线路(thyristor voltage mornitoring,TVM)进行在线监测。TVM实时用回报信号将监测的结果通过光缆送往阀底部电子设备柜(VBE)中。VBE中的单片机监测系统根据回报信号分析判定晶闸管的故障,当阀内故障晶闸管数超过设计允许的冗余数,产生相应的跳闸信号。笔者就2009年3月12日和2010年5月29日贵—广Ⅱ宝安站极2 Y3阀因无回报信号导致极2跳闸的故障进行了分析,得出:跳闸故障并非由阀或VBE故障引起,而是由阀侧电压不稳定或扰动引起的结论,并提出相关反措的建议。  相似文献   

9.
This paper describes a bidirectional isolated DC/DC converter considered as a core circuit for next‐generation 3.3‐kV/6.6‐kV high‐power‐density power conversion systems. The DC/DC converter is intended to use power switching devices based on SiC and/or GaN, which will be available on the market in the near future. A 350‐V, 10‐kW, and 20‐kHz DC/DC converter is designed, constructed, and tested in this paper. It consists of two single‐phase full‐bridge converters with the latest trench‐gate Si‐IGBTs and a 20‐kHz transformer with a nano‐crystalline soft‐magnetic material core and litz wires. The transformer plays an essential role in achieving galvanic isolation between the two full‐bridge converters. The overall efficiency from the DC‐input to DC‐output terminals is accurately measured to be as high as 97%, excluding gate drive circuit and control circuit losses from the whole loss. Moreover, loss analysis is carried out to estimate effectiveness in using SiC‐based power switching devices. The loss analysis clarifies that the use of SiC‐based power devices may bring a significant reduction in conducting and switching losses to the DC/DC converter. As a result, the overall efficiency may reach 99% or higher. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 163(2): 75–83, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20505  相似文献   

10.
This paper presents an intensive discussion on a long‐distance high‐voltage direct‐current (HVDC) transmission system that combines two modular multilevel cascade converters based on double‐star chopper cells (MMCC‐DSCC) with DC power cables. Hereinafter, a single MMCC‐DSCC is referred to as a DSCC converter or just as a DSCC for the sake of simplicity. The HVDC transmission system is required to provide low‐voltage‐ride‐through (LVRT) capability to enhance transmission system availability. This paper proposes a new LVRT method without any direct information exchange between the two DSCC converters. The validity of the method is verified, using simulated waveforms from the software package of “PSCAD/EMTDC” and experimental waveforms from a three‐phase 200‐V, 400‐Vdc, 10‐kW, 50‐Hz downscaled HVDC system with a set of 300‐meter‐long DC power cables.  相似文献   

11.
A compact pulsed power supply (PPS) system is important for the electromagnetic gun (EMG) system, which should supply high energy and large current. The paper presents the setup of compact PPS system based on high energy density capacitors. The PPS system includes ten 50 kJ modules, which can be triggered in sequence. Each module is composed of a capacitor (1000 μF/10 kV), a pulse shaping inductor (20 μH), a crowbar diodes with a crowbar resistor(30mΩ), as well as a main switch which can be a triggered vacuum switch?TVS? or thyristors. The peak value of the output current of each module is 70 kA. Characteristics of the TVS and thyristors are comparatively studied to determine their influence on the output current and energy. The requirements for the diode-stacks of the crowbar are fast-recovery, high voltage withstanding. A proper protection measure is used in order to protect the crowbar diodes from the damage of over-voltage when switch is fired. In the end, the overall discharge currents of the PPS triggered in sequence are presented.  相似文献   

12.
As an antivandalism measure, polymer insulators, which are light and show good performance with regard to contamination withstand voltage, have already been adopted for many new power transmission lines, mainly in the United States. However, they are subject to aging deterioration promoted by ultraviolet rays, ozone, leakage currents, and partial discharge, because polymer insulators are made of organic materials. It is important that we understand the characteristics of aging deterioration in order to maintain power transmission lines. Since polymer insulators for power transmission lines are more expensive than ceramic ones, they are little used in Japan, and there are no field data. In this study, we installed polymer insulators on a 77‐kV power transmission line, carried out field testing for 9 years, from 1997 to 2006, and investigated the electrical and mechanical characteristics of the insulators. © 2011 Wiley Periodicals, Inc. Electr Eng Jpn, 175(3): 20–26, 2011; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.21068  相似文献   

13.
孟庆宗 《电力设备》2003,4(2):18-22
简要回顾了电力半导体器件的发展历史。对光控晶闸管(LTT)、集成门极换向晶闸管(IGCT)、绝缘栅双极晶体管(IGBT)以及反向开关两端晶闸管(RSD)等新型器件的工作原理、现状做了介绍。指出电力半导体是电力电子技术的基石.离开他们.电力电子技术将是无米之炊。  相似文献   

14.
When a new UHV substation is built in an urban region, generally, an existing underground transmission line will be diverted and drawn into the new substation. Compared with the latter construction method, enormous cost reduction of switching facilities and cable construction is expected when applying a Y‐branch joint (YJ) which is able to serve as a three‐way joint. The YJ has already been applied for 154‐kV‐class circuit, but it has not been investigated for 275‐kV‐class circuit. Since both XLPE and oil‐filled cable are presently used in 275‐kV‐class underground cable line, a universal design YJ for both cables has been investigated. The YJ was applied in a compact design which was based on our sophisticated electrical stress control technology for 500‐kV prefabricated‐type joint. Furthermore, the design was based on its prefabricated assembling technology. The YJ was verified as to its electrical and mechanical performance as 275‐kV cable joint by completion of its assembling test and a long‐term electrical test. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 164(2): 18–24, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20514  相似文献   

15.
To evaluate the performance requirement of high‐voltage direct current (HVDC) breakers for modular multilevel converter (MMC)‐MTDC (multi‐terminal high voltage direct current) systems with high efficiency, the equivalent model for calculating the maximum short‐circuit current is presented in this paper. First, the short‐circuit current is decomposed into the steady‐state component and the fault component according to its physical dynamics. Second, the steady‐state component is determined by solving the direct current (DC) network; the fault component is calculated by an equivalent network in which the converters are replaced by a reactance, a resistance, and a capacitance in series. Then, the complete procedure for evaluating the performance requirement of HVDC breakers is described based on short‐circuit current calculation. Verifications have been carried out based on a three‐terminal 800 MW/±400 kV bipolar MMC‐MTDC system. The results show that the proposed methodology is efficient and effective. Lastly, based on the same system, the performance requirement of HVDC breakers and the influence by the sub‐module (SM) capacitance and the smoothing reactor have been studied with the proposed methodology. © 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

16.
Fault current limiters (FCL) are extensively needed to suppress fault currents, particularly for trunk power systems heavily connected to high‐voltage transmission lines, such as the 500‐kV‐class power system which constitutes the nucleus of the electric power system. In this paper, we propose a new FCL system, consisting of solid‐state diodes, a dc coil, and a bypass ac coil, and describe the specifications of the trunk electric power system and the 6.6‐kV reduction model. Also we propose a 6.6‐kV trial model and describe an efficiency test with a short circuit generator, which we have trial produced for the new FCL system. © 2001 Scripta Technica, Electr Eng Jpn, 137(3): 29–36, 2001  相似文献   

17.
我国贵州-广东Ⅰ回、Ⅱ回±500 kV高压直流输电和西北-华中(灵宝)联网直流背靠背工程中,均采用了用激光脉冲直接触发晶闸管的直接光控晶闸管换流阀(以下简称LTT阀)。为了确保触发光脉冲的可靠性,在阀底部电子设备柜(VBE)中设置了对光发射电路进行在线实时监测的功能。笔者就近年来运行中激光发射监测出现的一些问题进行探讨。  相似文献   

18.
1000kV/8 kA升流装置的研制   总被引:1,自引:0,他引:1  
为施加1000 kV工作电压考核的设备(如气体绝缘套管、变压器及电抗器用套管、断路器、GIS、隔离开关等)提供额定工作电流,研制了100kV/8kA大电流升流装置,其绝缘水平与1000 kV输变电设备相同,长期额定工作电流8 kA,电流输出端口额定电压1.2 kV。在介绍大电流升流装置的设计思想(工作原理、组成、参数选择、本体设计、无功补偿及测量系统)的基础上,设计了不同结构电压传感器,为检验和研究1000 kV罐式CVT、电子式电压互感器创造了条件。  相似文献   

19.
A superconducting generator is expected to be a next‐generation machine due to its many advantages over a conventional generator. Super‐GM has been promoting R&D of 70‐MW‐class superconducting model generators to verify the basic technologies required for the design and manufacture of a 200‐MW‐class superconducting pilot generator. Verification tests of the third model generator, quick response excitation type C generator, were finished in June 1999. The excellent characteristics as a superconducting generator were verified through the series of tests. We report main test results such as “open and short‐circuit test,” “loaded test,” “quick excitation test,” “negative‐phase sequence overcurrent test,” and “sudden short circuit test.” © 2002 Wiley Periodicals, Inc. Electr Eng Jpn, 140(1): 22–29, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10029  相似文献   

20.
Sensitivity and electro‐static discharges (ESD) protection level are crucial parameters for any Ultra High‐Frequency (UHF) power rectifier–harvester designed for radio‐frequency identification (RFID) devices. While sensitivity limits the reading range of the interrogator‐to‐tag communication link, the requirement for an adequate protection against ESD is enforced in commercial devices connected to a printed antenna. Both resistive and capacitive parasitics of the protection circuits severely affect RF performance of the device. In the paper, a rectifier for UHF RFID embedding an ESD protection for 2 kV human‐body discharge model (HBM) level is proposed. The target of a low added parasitic capacitance is achieved by adapting the protection circuit to the RFID rectifier and reusing the ESD clamp for additional functions being mandatory in a UHF RFID front end. The layout of the ESD clamp has been optimized for minimum parasitic resistance without sacrificing the protection level. Two UHF harvesters were implemented in a 180 nm digital complementary metal‐oxide semiconductor (CMOS) technology, featuring a minimum sensitivity of ?15.5 dBm with an ESD protection level of 2 kV HBM. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号