首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
This work studies periodic solutions applicable, as an extended phase, to the JAXA asteroid rendezvous mission Hayabusa 2 when it is close to target asteroid 1999 JU3. The motion of a spacecraft close to a small asteroid can be approximated with the equations of Hill’s problem modified to account for the strong solar radiation pressure. The identification of families of periodic solutions in such systems is just starting and the field is largely unexplored. We find several periodic orbits using a grid search, then apply numerical continuation and bifurcation theory to a subset of these to explore the changes in the orbit families when the orbital energy is varied. This analysis gives information on their stability and bifurcations. We then compare the various families on the basis of the restrictions and requirements of the specific mission considered, such as the pointing of the solar panels and instruments. We also use information about their resilience against parameter errors and their ground tracks to identify one particularly promising type of solution.  相似文献   

2.
This study presents an approximate model for the atypical Schumann resonance in Titan’s atmosphere that accounts for the observations of electromagnetic waves and the measurements of atmospheric conductivity performed with the Huygens Atmospheric Structure and Permittivity, Wave and Altimetry (HASI–PWA) instrumentation during the descent of the Huygens Probe through Titan’s atmosphere in January 2005. After many years of thorough analyses of the collected data, several arguments enable us to claim that the Extremely Low Frequency (ELF) wave observed at around 36 Hz displays all the characteristics of the second harmonic of a Schumann resonance. On Earth, this phenomenon is well known to be triggered by lightning activity. Given the lack of evidence of any thunderstorm activity on Titan, we proposed in early works a model based on an alternative powering mechanism involving the electric current sheets induced in Titan’s ionosphere by the Saturn’s magnetospheric plasma flow. The present study is a further step in improving the initial model and corroborating our preliminary assessments. We first develop an analytic theory of the guided modes that appear to be the most suitable for sustaining Schumann resonances in Titan’s atmosphere. We then introduce the characteristics of the Huygens electric field measurements in the equations, in order to constrain the physical parameters of the resonating cavity. The latter is assumed to be made of different structures distributed between an upper boundary, presumably made of a succession of thin ionized layers of stratospheric aerosols spread up to 150 km and a lower quasi-perfect conductive surface hidden beneath the non-conductive ground. The inner reflecting boundary is proposed to be a buried water–ammonia ocean lying at a likely depth of 55–80 km below a dielectric icy crust. Such estimate is found to comply with models suggesting that the internal heat could be transferred upwards by thermal conduction of the crust, while convective processes cannot be ruled out.  相似文献   

3.
4.
In this work we present a phase space analysis of a quintessence field and a perfect fluid trapped in a Randall-Sundrum’s Braneworld of type 2. We consider a homogeneous but anisotropic Bianchi I brane geometry. Moreover, we consider the effect of the projection of the five-dimensional Weyl tensor onto the three-brane in the form of a negative Dark Radiation term. For the treatment of the potential we use the “Method of f-devisers” that allows investigating arbitrary potentials in a phase space. We present general conditions on the potential in order to obtain the stability of standard 4D and non-standard 5D de Sitter solutions, and we provide the stability conditions for both scalar field-matter scaling solutions, scalar field-dark radiation solutions and scalar field-dominated solutions. We find that the shear-dominated solutions are unstable (particularly, contracting shear-dominated solutions are of saddle type). As a main difference with our previous work, the traditionally ever-expanding models could potentially re-collapse due to the negativity of the dark radiation. Additionally, our system admits a large class of static solutions that are of saddle type. These kinds of solutions are important at intermediate stages in the evolution of the universe, since they allow the transition from contracting to expanding models and viceversa. New features of our scenario are the existence of a bounce and a turnaround, which lead to cyclic behavior, that are not allowed in Bianchi I branes with positive dark radiation term. Finally, as specific examples we consider the potentials V∝sinh?α (β?) and V∝[cosh(ξ?)?1] which have simple f-devisers.  相似文献   

5.
6.
We present an analysis of 19 μm spectra of Io’s SO2 atmosphere from the TEXES mid-infrared high spectral resolution spectrograph on NASA’s Infrared Telescope Facility, incorporating new data taken between January 2005 and June 2010 and a re-analysis of earlier data taken from November 2001 to January 2004. This is the longest set of contiguous observations of Io’s atmosphere using the same instrument and technique thus far. We have fitted all 16 detected blended absorption lines of the ν2 SO2 vibrational band to retrieve the subsolar values of SO2 column abundance and the gas kinetic temperature. By incorporating an existing model of Io’s surface temperatures and atmosphere, we retrieve sub-solar column densities from the disk-integrated data. Spectra from all years are best fit by atmospheric temperatures <150 K. Best-fit gas kinetic temperatures on the anti-Jupiter hemisphere, where SO2 gas abundance is highest, are low and stable, with a mean of 108 (±18) K. The sub-solar SO2 column density between longitudes of 90–220° varies from a low of 0.61 (±0.145) × 10?17 cm?2, near aphelion in 2004, to a high of 1.51 (±0.215) × 1017 cm?2 in 2010 when Jupiter was approaching its early 2011 perihelion. No correlation in the gas temperature was seen with the increasing SO2 column densities outside the errors.Assuming that any volcanic component of the atmosphere is constant with time, the correlation of increasing SO2 abundance with decreasing heliocentric distance provides good evidence that the atmosphere is at least partially supported by frost sublimation. The SO2 frost thermal inertias and albedos that fit the variation in atmospheric density best are between 150–1250 W m?2 s?1/2 K?1 and 0.613–0.425 respectively. Photometric evidence favors albedos near the upper end of this range, corresponding to thermal inertias near the lower end. This relatively low frost thermal inertia produces larger amplitude seasonal variations than are observed, which in turn implies a substantial additional volcanic atmospheric component to moderate the amplitude of the seasonal variations of the total atmosphere on the anti-Jupiter hemisphere. The seasonal thermal inertia we measure is unique both because it refers exclusively to the SO2 frost surface component, and also because it refers to relatively deep subsurface layers (few meters) due to the timescales of many years, while previous studies have determined thermal inertias at shallower levels (few centimeters), relevant for timescales of ~2 h (eclipse) or ~2 days (diurnal curves).  相似文献   

7.
Recently Varvoglis and Hadjidemetriou (Astrophys. Space Sci. doi:, 2012; hereafter referred to as paper VH) have raised two points concerning the model of the restricted three-body problem with variable mass presented in our paper (Zhang et al. in Astrophys. Space Sci. 337:107, 2012; hereafter referred to as paper ZZX) and made intensive investigations of this model. These points and investigations are very useful and here we provide some explanation and supplementary specification regarding the model presented in the paper ZZX.  相似文献   

8.
9.
During the first and second Mercury flyby the MESSENGER spacecraft detected a dawn side double-current sheet inside the Hermean magnetosphere that was labeled the “double magnetopause” (Slavin, J.A. et al. [2008]. Science 321, 85). This double current sheet confines a region of decreased magnetic field that is referred to as Mercury’s “dayside boundary layer” (Anderson, M., Slavin, J., Horth, H. [2011]. Planet. Space Sci.). Up to the present day the double current sheet, the boundary layer and the key processes leading to their formation are not well understood. In order to advance the understanding of this region we have carried out self-consistent plasma simulations of the Hermean magnetosphere by means of the hybrid simulation code A.I.K.E.F. (Müller, J., Simon, S., Motschmann, U., Schüle, J., Glassmeier, K., Pringle, G.J. [2011]. Comput. Phys. Commun. 182, 946–966). Magnetic field and plasma results are in excellent agreement with the MESSENGER observations. In contrast to former speculations our results prove this double current sheet may exist in a pure solar wind hydrogen plasma, i.e. in the absence of any exospheric ions like sodium. Both currents are similar in orientation but the outer is stronger in intensity. While the outer current sheet can be considered the “classical” magnetopause, the inner current sheet between the magnetopause and Mercury’s surface reveals to be sustained by a diamagnetic current that originates from proton pressure gradients at Mercury’s inner magnetosphere. The pressure gradients in turn exist due to protons that are trapped on closed magnetic field lines and mirrored between north and south pole. Both, the dayside and nightside diamagnetic decreases that have been observed during the MESSENGER mission show to be direct consequences of this diamagnetic current that we label Mercury’s “boundary-layer-current“.  相似文献   

10.
Solar System Research - The paper presents the results of studying the dynamic structure of near-Earth orbital space in the regions of orbital resonances 1 : 4, 1 : 6, and 1 : 8 with the speed of...  相似文献   

11.
We developed a simple, handheld, and user-friendly magnetic susceptibility meter specialized for the identification of meteorites. The measurement is based on an LC resonance circuit. When provided with a rough estimate of the sample mass, the instrument displays directly the mass-normalized magnetic susceptibility expressed in logχm (with χm in 10−9 m3 kg−1), a parameter that is widely used in the classification of meteorites. Moreover, the measurement of the impedance of the LC resonator provides a proxy of the electrical conductivity (C-index) that can be helpful to distinguish metal-bearing samples from magnetite-bearing samples. This C-index offers an additional diagnostic for the identification of meteorites. Our tests demonstrate that the precision and the accuracy of this instrument called “Meteorite meter” (MetMet) are sufficient to allow distinguishing most meteorites from most terrestrial rocks, for a minimum recommended sample mass of 5 g. The distinction of some meteorite groups is also possible, in particular the separation of the three ordinary chondrite groups. Meteorite hunters, collectors, and curators and non-specialists, including children, can use this instrument as a guidance in the identification and classification of meteorites. This kind of instrument has an immense advantage over the widely used testing of meteorites with magnets, as it does not affect the paleomagnetic records of meteorites that are highly valuable for scientists.  相似文献   

12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号