首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
    
The rate of recession (dQ/dt) in a given time interval has long been plotted in log–log space against the concurrent mean discharge (Qavg). Recent interpretations of these dQ/dt–Qavg plots have sought to look at curves for individual events instead of the data cloud from all the data points together. These individual recession curves have been observed to have near‐constant slope but to have varying intercepts, features hypothesized to possibly be explained by the nature of the contraction of the active channel network during recession. For a steep, 150‐ha forested catchment in central New York state with an 8.8‐km channel network, changes in the active channel network were mapped between April and November 2013. Streamflow recession occurred in a matter of days, but changes in the active channel network occurred over a matter of weeks. Thus, in this catchment, it does not appear that channel contraction directly controls recession. Additionally, field observations indicate that dry down did not occur in a spatially organized, sequential way such that the upper end of higher‐order streams dried first. Instead, the location of groundwater seeps, in part, controlled the active portion of the channel network. Consistent with the presence of different types of flow contributing zones, the paper presents a conceptual model that consists of multiple parallel reservoirs of varying drainage rate and varying degrees of recharge at different times of the year. This conceptual model is able to reproduce a slope of 2 and a seasonal shift in intercept typical of individual recession curves. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Japan developed large areas of coniferous plantations for timber production between the 1950s and 1970s; however, forestry practices such as thinning, pruning, and harvesting in most of the plantations have declined since the 1980s. Researchers speculated that reduced forestry practices could reduce run‐off and therefore available water resources. As a countermeasure to this potential risk, many local governments have introduced local taxes to stimulate forestry practices in the plantations. However, no studies have presented evidence for decreased annual run‐off and/or low flow in watersheds where forestry practices have declined. As a starting point for assessing this risk, this study examined potential changes in the annual run‐off and low flow in the Terauchi watershed. A large area of this watershed was covered with coniferous plantations. We first surveyed the annual investment in forestry operations and the number of forest owners in the city of Amagi. (Note that Amagi includes the Terauchi watershed.) Both decreased during the period 1979–2007, indicating reduced forestry practices. The frequency distribution of plantation tree ages in the watershed also suggested reduced forestry practices. After excluding the effect of precipitation, we examined potential changes in the annual run‐off and low flow during the period 1979–2007. We did not observe significant decreases in the annual run‐off and low flow during the period. Thus, the risk of decreased water resources might be less than expected, and countermeasures to the risk should be reconsidered. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
    
Separating impacts of human activities and climate change on hydrology is essential for watershed and ecosystem management. Many previous studies have focused on the impacts on total streamflow, however, with little attentions paid to its components (i.e., baseflow and surface run‐off). This study distinguished the contributions of climate change and human activities to the variations in streamflow, baseflow, and surface run‐off in the upstream area of the Heihe River Basin, a typical inland river basin in northwest China, by using eight different forms of time‐trend methods. The isolated contributions to streamflow variation were also compared with those obtained by two Budyko‐based approaches. Our results showed that the time‐trend methods consistently estimated positive contributions of climate variability and human activities to the increases in streamflow and its components but with obviously varying magnitudes. With regard to streamflow, the time‐trend method double‐mass‐curve–Wei, with a physical basis, produced a reasonable smaller contribution of human activities than climate changes, inconsistent with the Budyko‐based approaches. However, all the other time‐trend methods led to contrary results. The contributions to baseflow variation diverged more significantly than those to streamflow and surface run‐off, ranging from 24% to 92% for human activities and from 8% to 76% for climate variability. In terms of surface run‐off, most of the time‐trend approaches produced smaller contributions of human activities (ranging from 21% to 49%) than climate change. The uncertainties associated with the various time‐trend approaches and the baseflow separation algorithm were revealed and discussed, along with some recommendations for future work.  相似文献   

4.
    
This study investigates critical run‐off and sediment production sources in a forested Kasilian watershed located in northern Iran. The Water Erosion Prediction Project (WEPP) watershed model was set up to simulate the run‐off and sediment yields. WEPP was calibrated and validated against measured rainfall–run‐off–sediment data. Results showed that simulated run‐off and sediment yields of the watershed were in agreement with the measured data for the calibration and validation periods. While low and medium values of run‐off and sediment yields were adequately simulated by the WEPP model, high run‐off and sediment yield values were underestimated. Performance of the model was evaluated as very good and satisfactory during the calibration and validation stages, respectively. Total soil erosion and sediment load of the study watershed during the study period were determined to be 10 108 t yr?1 and 8735 t yr?1, respectively. The northern areas of the watershed with dry farming were identified as the critical erosion prone zones. To prioritize the subwatersheds based on their contribution to the run‐off and sediment production at the watershed's main outlet, unit response approach (URA) was applied. In this regard, subwatersheds close to the main outlet were found to have the highest contribution to sediment yield of the whole watershed. Results indicated that depending on the objective of land and water conservation practices, particularly, for controlling sediment yield at the main outlet, critical areas for implementing the best management practices may be identified through conjunctive application of WEPP and URA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
    
A simple grid cell‐based distributed hydrologic model was developed to provide spatial information on hydrologic components for determining hydrologically based critical source areas. The model represents the critical process (soil moisture variation) to run‐off generation accounting for both local and global water balance. In this way, it simulates both infiltration excess run‐off and saturation excess run‐off. The model was tested by multisite and multivariable evaluation on the 50‐km2 Little River Experimental Watershed I in Georgia, U.S. and 2 smaller nested subwatersheds. Water balance, hydrograph, and soil moisture were simulated and compared to observed data. For streamflow calibration, the daily Nash‐Sutcliffe coefficient was 0.78 at the watershed outlet and 0.56 and 0.75 at the 2 nested subwatersheds. For the validation period, the Nash‐Sutcliffe coefficients were 0.79 at the watershed outlet and 0.85 and 0.83 at the 2 subwatersheds. The per cent bias was less than 15% for all sites. For soil moisture, the model also predicted the rising and declining trends at 4 of the 5 measurement sites. The spatial distribution of surface run‐off simulated by the model was mainly controlled by local characteristics (precipitation, soil properties, and land cover) on dry days and by global watershed characteristics (relative position within the watershed and hydrologic connectivity) on wet days when saturation excess run‐off was simulated. The spatial details of run‐off generation and travel time along flow paths provided by the model are helpful for watershed managers to further identify critical source areas of non‐point source pollution and develop best management practices.  相似文献   

6.
    
Hydrological studies focused on Hortonian rainfall–run‐off scaling have found that the run‐off depth generally declines with the plot length in power‐law scaling. Both the power‐law proportional coefficient and the scaling exponent show great variability for specific conditions, but why and how they vary remain unclear. In the present study, the scaling of hillslope Hortonian rainfall–run‐off processes is investigated for different rainfall, soil infiltration, and hillslope surface characteristics using the physically based cell‐based rainfall‐infiltration‐run‐off model. The results show that both temporally intermittent and steady rainfalls can result in prominent power‐law scaling at the initial stage of run‐off generation. Then, the magnitude of the power‐law scaling decreases gradually due to the decreasing run‐on effect. The power‐law scaling is most sensitive to the rainfall and soil infiltration parameters. When the ratio of rainfall to infiltration exceeds a critical value, the magnitude of the power‐law scaling tends to decrease notably. For different intermittent rainfall patterns, the power‐law exponent varies in the range of ?1.0 to ?0.113, which shows an approximately logarithmic increasing trend for the proportional coefficient as a function of the run‐off coefficient. The scaling is also sensitive to the surface roughness, soil sealing, slope angle, and hillslope geometry because these factors control the run‐off routing and run‐on infiltration processes. These results provide insights into the variable scaling of the Hortonian rainfall–run‐off process, which are expected to benefit modelling of large‐scale hydrological and ecological processes.  相似文献   

7.
    
Watersheds are complex systems due to their surface and subsurface spatially connected water fluxes and biochemical processes that shape Earth's critical zone. In intensively managed landscapes, the implementation of watershed management practices (WMPs) regulate their short‐term responses, whereas climate variability controls the long‐term processes. Understanding their responses to anthropogenic and natural stressors requires a holistic approach that takes into account their multiscale spatio‐temporal linkages. The objective of this study was to simulate the impacts of spatially and temporally varying WMPs and projected climate changes on the surface and groundwater resources in the Upper Sangamon River Basin (USRB), a watershed in central Illinois greatly impacted by agricultural and industrial operations. The physically based hydrologic model MIKE‐SHE was used to simulate the hydrologic responses of the basin to different WMPs and climatic conditions. The simulation of a WMP was varied spatially across the basin to determine the spectrum of responses and critical conditions. In general, the wetlands and forested riparian buffer scenarios were found to cause a reduction in the average streamflow, whereas crop rotation had varied responses depending on the location of implementation and the climate condition assumed. Reductions of up to 30% in the average streamflow were found for the forested riparian buffer under the ESM 2M climate projections, whereas an increase of up to 13% with the crop rotation schemes under CM3 climate was predicted. The model results showed that the installation of tile drains across the USRB increased the water table depth (from ground level) by up to 56%, making crop production possible. Groundwater level in USRB appeared to be more sensitive to future climatic conditions than to WMP implementation. The impacts of WMPs are determined to depend on the climate conditions under which they are applied. Investigating individual and combined stressors' effects over the critical zone at a watershed scale can lead to a more comprehensive analysis of the risk and trade‐offs in every managerial decision that will enable an efficient use of resources.  相似文献   

8.
  总被引:1,自引:0,他引:1  
The conversion of bedrock to regolith marks the inception of critical zone processes, but the factors that regulate it remain poorly understood. Although the thickness and degree of weathering of regolith are widely thought to be important regulators of the development of regolith and its water‐storage potential, the functional relationships between regolith properties and the processes that generate it remain poorly documented. This is due in part to the fact that regolith is difficult to characterize by direct observations over the broad scales needed for process‐based understanding of the critical zone. Here we use seismic refraction and resistivity imaging techniques to estimate variations in regolith thickness and porosity across a forested slope and swampy meadow in the Southern Sierra Critical Zone Observatory (SSCZO). Inferred seismic velocities and electrical resistivities image a weathering zone ranging in thickness from 10 to 35 m (average = 23 m) along one intensively studied transect. The inferred weathering zone consists of roughly equal thicknesses of saprolite (P‐velocity < 2 km s?1) and moderately weathered bedrock (P‐velocity = 2–4 km s?1). A minimum‐porosity model assuming dry pore space shows porosities as high as 50% near the surface, decreasing to near zero at the base of weathered rock. Physical properties of saprolite samples from hand augering and push cores are consistent with our rock physics model when variations in pore saturation are taken into account. Our results indicate that saprolite is a crucial reservoir of water, potentially storing an average of 3 m3 m?2 of water along a forested slope in the headwaters of the SSCZO. When coupled with published erosion rates from cosmogenic nuclides, our geophysical estimates of weathering zone thickness imply regolith residence times on the order of 105 years. Thus, soils at the surface today may integrate weathering over glacial–interglacial fluctuations in climate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
    
The level of complexity, and the number of parameters, to include in a hydrological model is a relatively contentious issue in hydrological modelling. However, it can be argued that explicitly representing important run‐off generation processes can improve the practical value of a model's outputs. This paper explores the benefits of including a new function into an existing semi‐distributed hydrological model (the Pitman model) that is widely used in the sub‐Saharan Africa region. The new function was designed to represent saturation‐excess surface run‐off processes at subcatchment scales and was motivated by the evidence of dambo (low topography riparian areas) type features in many sub‐Saharan river basins. The results for uncertainty versions of the model, with and without the new function, were compared for 25 catchments, which were divided up into those where evidence of dambos exists and those where there is no such evidence. The results suggest that the new function certainly improves the model results for the catchments where dambos exist, but not in situations where saturation‐excess surface run‐off is not expected to occur. The overall conclusion is therefore that the addition of the new function is justified.  相似文献   

10.
    
The Loess Plateau has been experiencing large‐scale land use and cover changes (LUCCs) over the past 50 years. It is well known about the significant decreasing trend of annual streamflow and sediment load in the catchments in this area. However, how surface run‐off and sediment load behaved in response to LUCC at flood events remained a research question. We investigated 371 flood events from 1963 to 2011 in a typical medium‐sized catchment within the Plateau in order to understand how LUCC affected the surface run‐off generation and sediment load and their behaviours based on the analysis of return periods. The results showed that the mean annual surface run‐off and sediment load from flood events accounted for 49.6% and 91.8% of their mean annual totals. The reduction of surface run‐off and associated sediment yield in floods explained about 85.0% and 89.2% of declines in the total annual streamflow and sediment load, respectively. The occurrences of flood events and peak sediment concentrations greater than 500 kg/m3 showed a significantly downward trend, yet the counterclockwise loop events still dominated the flood event processes in the catchment. The results suggest that LUCC over the past 50 years resulted in significant changes in the water balance components and associated soil erosion and sediment transportation in the catchment. This was achieved mainly by reducing surface run‐off and sediment yield during floods with return period of less than 5 years. Run‐off–sediment load behaviour during the extreme events with greater than 10‐year return periods has not changed. Outcomes from this study are useful in understanding the eco‐hydrological processes and assisting the sustainable catchment management and land use planning on the Loess Plateau, and the methodologies are general and applicable to similar areas worldwide.  相似文献   

11.
    
The understanding of the hydrology of plain basins may be improved by the combined analysis of rainfall–run‐off records and remote sensed surface moisture data. Our work evaluates the surface moisture area (SMA) produced during rainfall–run‐off events in a plain watershed of the Argentine Pampas Region, and studies which hydrological variables are related to the generated SMA. The study area is located in the upper and middle basins of the Del Azul stream, characterized by the presence of small gently hilly areas surrounded by flat landscapes. Data from 9 rainfall–run‐off events were analysed. MODIS surface reflectance data were processed to calculate SMA subsequent to the peak discharge (post‐SMA), and previous to the rainfall events (prev‐SMA), to consider the antecedent wetness. Rainfall–run‐off data included total precipitation depth (P), maximum intensity of rainfall over 6 hr (I6max), surface run‐off registered between the beginning of the event and the day previous to the analysed MODIS scene (R), peak flow (Qp), and flood intensity (IF). In contrast with other works, post‐SMA showed a negative relationship with the R. Three groups of cases were identified: (a) Events of low I6max, high prev‐SMA, and low R were associated with slow and weakly channelized flow over plain areas, leading to saturated overland flow (SOF), with large SMA; (b) events of high I6max, low prev‐SMA, and medium to high R were rapidly transported along the gentle slopes of the basin, related to Hortonian overland flow (HOF) and low post‐SMA; and (c) events of medium to high I6max and prev‐SMA with medium R were related to heterogeneous input‐antecedent‐run‐off conditions combined: Local spatial conditions may have produced HOF or SOF, leading to an averaged response with medium SMA. The interactions between the geomorphology of the basin, the characteristics of the events, and the antecedent conditions may explain the obtained results. This analysis is relevant for the general knowledge of the hydrology of large plains, whose functioning studies are still in their early stages.  相似文献   

12.
    
Run‐off transmission loss into karstified consolidated aquifer bedrock below ephemeral streams (wadis) has rarely been described nor quantified. This study presents unique data of long‐term high‐resolution field measurements and field observations in a semiarid to subhumid Mediterranean carbonatic mountainshed. The catchment with a 103 km2 surface area is subdivided into 5 subcatchments. Coupled run‐off measurements were made in the different stream sections (reaches), and transmission loss calculated from differences in discharge. Rainfall and run‐off observations from 9 automated precipitation gauging stations and 5 pressure transducers for automatic water level recording are complemented by manual measurements during 34 run‐off events covering a total measurement period of 8 consecutive years. Run‐off generation is strongly event based depending on rainfall intensities and depths. Both, run‐off generation and transmission losses are related to spatial patterns of bedrock lithologies (and hydrostratigraphy). Transmission losses range between 62% and 80% of generated run‐off, with most of the smaller events showing 100% transmission loss. Therefore, although event run‐off coefficients in the mountains can reach up to 22%, only 0.11% of total annual precipitation leaves the catchment as run‐off. Most run‐off infiltrates directly into the regional karst aquifers (Upper Cretaceous carbonate series), with transmission loss intensities of up to 40 mm/h below the stream channels. The factors determining run‐off—such as geology, pedology, vegetation cover and land use, relief and morphology, the semiarid to subhumid Mediterranean climate with a strong elevation gradient, and the patchiness of individual storm events distributed over the winter seasons—as well as the lithology and epikarst features of the bedrock are all characteristic for larger areas in the Mediterranean region. Therefore, we expect that our findings can be generalized to a large extent.  相似文献   

13.
    
There are few multibasin analyses of the effects of urban land cover on seasonal stream flow patterns within northern watersheds where winter snow cover is the norm. In this study, the effects of urban cover on stream flow were evaluated at nine catchments in southern Ontario, Canada, which vary greatly in urban impervious cover (1–84%) but cluster into two groups having ≥54% urban impervious area (‘urban’) and ≤11% impervious cover (‘rural’), respectively. Annual and seasonal run‐off totals (millimetres) were similar between the rural and urban groups and were relatively insensitive to urban cover. Instead, urban streams had significantly greater high flow frequency, flow variability and quickflow and lower baseflow compared with rural streams. Furthermore, differences in high flow frequency between urban and rural stream groups were largest in the summer and fall and less extreme in the winter and spring, perhaps because of the homogenizing effect of winter snow cover, frozen ground and spring melt on surface imperviousness. Although the clear clustering of streams into urban and rural groups precluded the identification of a threshold above which urban cover is the primary cause of flow differences, relatively high extreme flow frequency and flow variability in the two most urbanized of the rural streams (10–11% impervious) suggest that it may lie close to this range. Furthermore, whereas total run‐off volumes were not affected by urban cover, increases in stream flashiness and a greater frequency of high flow events particularly during the summer and fall may negatively impact stream biota and favour the transfer of surface‐deposited pollutants to urban streams. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
    
Despite the long history of the continuum equation approach in hydrology, it is not a necessary approach to the formulation of a physically based representation of hillslope hydrology. The Multiple Interacting Pathways (MIPs) model is a discrete realization that allows hillslope response and transport to be simultaneously explored in a way that reflects the potential occurrence of preferential flows and lengths of pathways. The MIPs model uses random particle tracking methods to represent the flow of water within the subsurface alongside velocity distributions that acknowledge preferential flows and transition probability matrices, which control flow pathways. An initial realization of this model is presented here in application to a tracer experiment carried out in Gårdsjön, Sweden. The model is used as an exploratory tool, testing several hypotheses in relation to this experiment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
    
Uncontrolled overland flow drives flooding, erosion, and contaminant transport, with the severity of these outcomes often amplified in urban areas. In pervious media such as urban soils, overland flow is initiated via either infiltration‐excess (where precipitation rate exceeds infiltration capacity) or saturation‐excess (when precipitation volume exceeds soil profile storage) mechanisms. These processes call for different management strategies, making it important for municipalities to discern between them. In this study, we derived a generalized one‐dimensional model that distinguishes between infiltration‐excess overland flow (IEOF) and saturation‐excess overland flow (SEOF) using Green–Ampt infiltration concepts. Next, we applied this model to estimate overland flow generation from pervious areas in 11 U.S. cities. We used rainfall forcing that represented low‐ and high‐intensity events and compared responses among measured urban versus predevelopment reference soil hydraulic properties. The derivation showed that the propensity for IEOF versus SEOF is related to the equivalence between two nondimensional ratios: (a) precipitation rate to depth‐weighted hydraulic conductivity and (b) depth of soil profile restrictive layer to soil capillary potential. Across all cities, reference soil profiles were associated with greater IEOF for the high‐intensity set of storms, and urbanized soil profiles tended towards production of SEOF during the lower intensity set of storms. Urban soils produced more cumulative overland flow as a fraction of cumulative precipitation than did reference soils, particularly under conditions associated with SEOF. These results will assist cities in identifying the type and extent of interventions needed to manage storm water produced from pervious areas.  相似文献   

16.
    
Presenting a critical review of daily flow simulation models based on the Soil Conservation Service curve number (SCS‐CN), this paper introduces a more versatile model based on the modified SCS‐CN method, which specializes into seven cases. The proposed model was applied to the Hemavati watershed (area = 600 km2) in India and was found to yield satisfactory results in both calibration and validation. The model conserved monthly and annual runoff volumes satisfactorily. A sensitivity analysis of the model parameters was performed, including the effect of variation in storm duration. Finally, to investigate the model components, all seven variants of the modified version were tested for their suitability. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
    
Soils in post‐wildfire environments are often characterized by a low infiltration capacity with a high degree of spatial heterogeneity relative to unburned areas. Debris flows are frequently initiated by run‐off in recently burned steeplands, making it critical to develop and test methods for incorporating spatial variability in infiltration capacity into hydrologic models. We use Monte Carlo simulations of run‐off generation over a soil with a spatially heterogenous saturated hydraulic conductivity (Ks) to derive an expression for an aerially averaged saturated hydraulic conductivity ( ) that depends on the rainfall rate, the statistical properties of Ks, and the spatial correlation length scale associated with Ks. The proposed method for determining is tested by simulating run‐off on synthetic topography over a wide range of spatial scales. Results provide a simplified expression for an effective saturated hydraulic conductivity that can be used to relate a distribution of small‐scale Ks measurements to infiltration and run‐off generation over larger spatial scales. Finally, we use a hydrologic model based on to simulate run‐off and debris flow initiation at a recently burned catchment in the Santa Ana Mountains, CA, USA, and compare results to those obtained using an infiltration model based on the Soil Conservation Service Curve Number.  相似文献   

18.
    
The recent rapid expansion of inland lakes on the Tibetan Plateau (TP) are a good indicator of the consequences of climate change. Quantifying the hydrological cycle of the lake basin is fundamentally important to understand the causes of lake growth. However, the hydrological processes of the TP interior are very complex and difficult to investigate because of the lack of observations. This is especially true for estimating the lake changes when run‐off inflows are affected by small lakes located in the flow routes within drainage areas. We used an integrated hydrological model, in combination with glacier melt and lake retention models, to analyse the run‐off inflows to Lake Siling Co, the largest endorheic lake in Tibet. It includes four subdrainage basins: Zhajiazangbu, Zhagenzangbu, Alizangbu, and Boquzangbu. Lake Siling Co was characterized by considerable increases during warm season from 1981 to 2012, due to the increased run‐off from Zhajiazangbu accounting for about 51–62% of the total run‐off inflows. Moreover, the dramatic increases exhibited during cold seasons were related to the increased retention water released from the small lakes within Zhagenzangbu and Alizangbu. Of the studied subdrainage basins, Boquzangbu contributed the least during both warm and cold seasons. On average, the annual amount of evaporation from lakes within the drainage area was about 2 times greater than that of glacier melt run‐off. Our results suggest that the retention effects of lakes on river inflows should receive more attention, because understanding these effects is potentially crucial to improved understanding of lake variations in the TP.  相似文献   

19.
    
Automation in baseflow separation procedures allowed fast and convenient baseflow and baseflow index (BF and BFI) estimation for studies including multiple watersheds and covering large spatio‐temporal scales. While most of the existing algorithms are developed and tested extensively for rainfall‐ and baseflow‐dominated systems, little attention is paid on their suitability for snowmelt‐dominated systems. Current publishing practice in regional‐scale studies is to omit BF and BFI uncertainty evaluation or sensitivity analysis. Instead, “standard” and “previously recommended” parameterizations are transferred from rainfall/BF to snowmelt‐dominated systems. We believe that this practice should be abandoned. First, we demonstrate explicitly that the three most popular heuristic automated BF separation methods—Lyne–Hollick and Eckhardt recursive digital filters, and the U.K. Institute of Hydrology smoothed minima method—produce a wide range of annual BF and BFI estimates due to parameter sensitivity during the annual snowmelt period. Then, we propose a solution for cases when BF and BFI calibration is not possible, namely excluding the snowmelt‐dominated period from the analysis. We developed an automated filtering procedure, which divides the hydrograph into pre‐snowbelt, post‐snowmelt, and snowmelt periods. The filter was tested successfully on 218 continuous water years of daily streamflow data for four snowmelt‐dominated headwater watersheds located in Wyoming (60–837 km2). The post‐snowmelt BF and BFI metric can be used for characterizing summer low‐flows for snowmelt‐dominated systems. Our results show that post‐snowmelt BF and BFI sensitivity to filter parameterization is reduced compared with the sensitivity of annual BF and BFI and is similar to the sensitivity levels for rainfall/baseflow systems.  相似文献   

20.
    
In this study, we investigated rainfall, run‐off, and sediment transport dynamics (414 run‐off events and 231 events with sediment information) of a humid mountain badland area—the Araguás catchment (Central Pyrenees, Spain)—from October 2005 to September 2016. Use of this long‐term database allows characterization of the hydrological response, which consist of low‐magnitude/high‐frequency events and high‐magnitude/low‐frequency events, and identification of seasonal dynamics and rainfall‐run‐off thresholds. Our results indicate that the Araguás catchment, similarly to other humid badlands, had high hydrological responsiveness (mean annual run‐off coefficient: 0.52), a non‐linear relationship of rainfall with run‐off (common in Mediterranean environments), and seasonal hydrological and sedimentological dynamics. We created and validated a multivariate regression model to characterize the hydrological variables (stormflow and peak discharge) and sedimentological variables (mean and maximum suspended sediment concentrations and total suspended sediment load). In summer and at the beginning of autumn, the response was mainly related to rainfall intensity, suggesting a predomination of Hortonian flows. In contrast, in spring and winter, the responses were mainly related to the antecedent conditions (previous rainfall and baseflow), suggesting the occurrence of saturated excess flow processes, and the contribution of neighbouring vegetated areas. The multivariate analysis also showed that total sediment load is better predicted by a multivariate regression model that integrates pre‐event, rainfall, and run‐off variables. In general, our models provided more accurate predictions of small‐magnitude/high‐frequency events than high‐magnitude/low‐frequency events. This study highlights the high inter‐ and intra‐annual variability response in humid badland areas and that long‐term records are needed to reduce the uncertainty of hydrological and sedimentological responses in Mediterranean badland areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号