首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
报道了一个全光纤主振荡功率放大(MOPA)结构的窄线宽掺铥连续光纤激光器,该高功率光纤激光器由窄线宽连续光纤激光种子源和两级包层抽运掺铥光纤放大器组成。激光种子源经过两级双包层掺铥光纤放大器后,最大平均输出功率为120W,功率放大器的斜率效率高达60%,输出激光的中心波长为1986nm,3dB光谱带宽为0.48nm,平均输出功率未能进一步提高仅受限于最大抽运功率。此外,利用该两级掺铥光纤放大器,得到了平均输出功率为122W的宽带超荧光光源,放大后的超荧光源的中心波长为1990nm,3dB光谱带宽为25nm。  相似文献   

2.
高功率窄线宽全光纤结构掺铥连续光纤激光器   总被引:3,自引:0,他引:3  
刘江  王璞 《中国激光》2013,40(1):102001-35
报道了高功率、窄线宽、全光纤结构的2μm波段掺铥连续光纤激光器。该掺铥连续光纤激光器采用了主振荡功率放大(MOPA)结构设计,通过采用790nm的多模半导体激光器抽运双包层单模掺铥光纤,获得了稳定的中心波长为1963nm的窄线宽、连续激光输出,最大输出功率为20mW。利用该低功率连续激光作为种子源经过两级掺铥光纤放大器后,平均输出功率达到了22W,相应的斜率效率为44%,激光中心波长为1963nm,3dB光谱线宽仅为0.24nm。  相似文献   

3.
开展了1 915 nm高功率、高效率、窄谱宽输出的掺铥光纤激光器(TDFL)研究。基于全光纤主振荡功率放大(MOPA)结构,采用40 W的793 nm半导体激光器泵浦纤芯直径25 m的双包层大模场面积(LMA)掺铥光纤,获得了最高功率12.1 W的1 915 nm窄谱宽连续种子激光输出。将8 W种子光注入掺铥光纤放大器,在793 nm激光泵浦功率为142.9 W时,获得了平均功率90 W的激光输出,其中心波长为1 915.051 nm,3 dB谱宽仅为94 pm,斜率效率为60.2%,光-光转换效率达63.0%。该系统在40 min运行考核时间内输出激光稳定性良好。  相似文献   

4.
搭建了一台基于双包层掺镱光纤的全光纤结构1091 nm主振荡功率放大(MOPA)激光器.种子源为自行搭建的线形驻波腔掺镱光纤振荡器,最大输出功率为56 mW,放大的自发辐射(ASE)抑制比大于35 dB.通过两级预放结构放大后,种子功率达到3W.主放级为一个大模场双包层掺镱光纤放大器,最大输出功率达到41.6W,斜率效...  相似文献   

5.
刘江  王璞 《中国激光》2012,39(8):802004-26
研制了高功率全光纤结构2μm波段掺铥皮秒脉冲光纤激光器。该激光器采用了主振荡功率放大(MOPA)结构设计,种子源采用790nm的多模半导体激光器作为抽运源、双包层掺铥光纤作为激光增益介质、半导体可饱和吸收镜(SESAM)作为锁模器件,从而实现了重复频率为10.4MHz的皮秒激光脉冲输出,其最大平均输出功率为15mW。种子源经过一级掺铥光纤放大器后,获得了1.1W高平均功率输出,相应的单脉冲能量高达105nJ,激光脉冲宽度为9ps,峰值功率为11.6kW。此时测得激光脉冲的中心波长为1963nm,3dB光谱带宽为0.5nm。  相似文献   

6.
报道了一种新型纳秒脉冲532 nm绿光激光器,其基频光为耗散孤子共振(DSR)方波纳秒脉冲、由掺镱光纤激光器得到,该激光器采用了全光纤主振荡功率放大(MOPA)结构设计。利用非线性偏振旋转(NPR)锁模技术,掺镱光纤激光种子源产生了稳定的DSR方波纳秒脉冲激光输出,输出激光的脉冲宽度随抽运功率的改变在3~40 ns之间可调。利用该DSR方波纳秒脉冲激光作为种子源,经过一级非保偏结构掺镱光纤纤芯放大和两级全保偏结构掺镱光纤包层放大之后,得到了平均功率为6.95 W,峰值功率为4.4 k W的脉冲激光输出。利用长度为20 mm的非线性晶体LBO作为频率转换器,得到了平均功率为2.1 W的绿光激光输出,相应的光光转换效率为30.2%。  相似文献   

7.
张美  延凤平  刘硕  尹智 《中国激光》2015,(4):159-166
近年来随着对单频光纤激光器和放大器研究的不断深入,得到了越来越高的输出功率,由于单频光纤激光器、放大器的输出功率在很大程度上受限于受激布里渊散射(SBS)效应,故需要研究SBS效应的影响因素和抑制方法。利用铥离子(Tm3+)的速率方程和SBS效应下双包层光纤放大器的速率方程,建立了单频光纤放大器的理论模型,计算得到了掺铥光纤放大器的能量分布和输出功率,并讨论了光纤长度、抽运功率、Tm3+掺杂浓度、增益光纤内温度分布等因素对单频光纤放大器中SBS效应和输出功率的影响,总结了在提高放大器输出功率的同时有效抑制SBS效应的方法。自行搭建了全光纤掺铥光纤种子光源及放大器,高稳定性的全光纤掺铥激光种子光的中心波长为1941 nm,信噪比约为60 d B。当掺铥放大器的抽运功率达到2.15 W时,激光的输出功率可以达到0.766 W。  相似文献   

8.
姜培培  蔡双双  沈永行  吴波 《中国激光》2008,35(s2):168-171
报道了研制主振-放大(MOPA)结构的高功率保偏掺镱脉冲光纤激光器并用其抽运光参变振荡器(OPO)的研究工作。掺镱脉冲光纤激光器以声光调Q的Nd∶YVO4激光器作为种子源, Liekki的大直径双包层保偏光纤作为放大介质, 得到接近基模的1064 nm波长激光输出, 最大线偏振输出功率17 W, 偏振消光比优于10 dB, 重复频率50 kHz, 脉冲宽度60 ns。利用该光纤激光作为抽运光, 抽运基于周期性畴极化反转掺镁铌酸锂(PPMgLN)晶体的宽带可调谐OPO, 实现了高效参量转换。在信号光1518 nm通道, 以16.2 W功率抽运, 获得最大参变输出功率9 W, 其中3.5 μm波长功率为2.4 W。OPO的能量转换效率为58%, 斜效率为68%。在信号光1491 nm通道, 以14 W功率抽运, 获得最大参变输出6.6 W, 其中3.7 μm波长功率超过2 W。  相似文献   

9.
赵岭  张春林  王立军 《半导体光电》2005,26(5):406-408,411
报道了以Cr4 :YAG被动调Q固体激光器为主振荡级的光纤型主振荡功率放大器(MOPA),主振荡级通过SMA-905接头实现光纤耦合输出,选用975 nm的半导体光纤耦合模块作为抽运源,通过多模光纤合束嚣和锥度光纤将抽运光和信号光耦合进掺Yb3 双包层光纤,利用包层抽运技术,使主振荡器的脉冲种子源在掺Yb3 双包层光纤得到增益放大.当主振荡器的重复频率为20 kHz,双包层光纤的抽运光入纤功率为6.9 W时,放大器输出的光脉冲平均功率为0.598 W,整个装置实现了全光纤连接.  相似文献   

10.
全光纤结构的两级分布式窄线宽双包层光纤放大器   总被引:2,自引:1,他引:1  
利用主振荡一功率放大(MOPA)技术,实验研究了两级级联、全光纤结构的窄线宽连续激光放大器.其中,以20dB光谱线宽0.078nm的窄线光纤激光器为信号光源,两个放大级中分别采用光纤侧面耦合器,(6+1)X1光纤合束器实现抽运光功率的耦合.以及使用1053nm单模纤芯的双包层掺镱光纤、大模场面积的掺镱双包层光纤作为增益光纤.在伞光纤结构放大器中,对第二级放大级中(6+1)X1抽运光注入端的反向传输光的光谱和功率进行了监测和分析.通过优化增益光纤的长度,抑制了掺镱光纤中自发辐射光的自牛激光振荡.在窄线宽激光放大过程中实现了中心波长1053 nm.总放大增益27.6 dB,功率16.09 W的稳定激光输出,没有发现受激布里渊散射和受激拉曼散射等非线性效应.  相似文献   

11.
为了抑制受激布里渊散射效应, 提高单频窄线宽种子源的放大功率, 采用主振荡功率放大器结构, 并对光纤长度、纤芯直径和抽运参量进行优化, 实现了42W的1064nm信号光输出。实验中, 一级放大采用914nm半导体激光器作为抽运源, 增益光纤芯径10μm, 长度8m;二级放大采用976nm半导体激光器作为抽运源, 增益光纤芯径20μm, 长度2.4m。在种子光功率40mW、一级放大的抽运功率6.8W、二级放大的抽运功率85W时, 得到了42W的1064nm信号光输出。结果表明, 光光转换效率约49.4%, 偏振消光比27.5dB; 输出信号光中心波长1064.5nm, 线宽约70MHz, 保持了种子光的单频特性。在42W连续输出时没有观察到受激布里渊散射, 继续增大抽运功率, 有望实现更高功率的放大。  相似文献   

12.
设计并演示了一种2μm波段高信噪比混合复合谐振腔型单纵模(SLM)掺铥光纤激光器(TDFL)。混合复合谐振腔由基于3个均匀光纤布拉格光栅(FBG)和2个光纤耦合器(OC)的非对称线形复合四腔和基于另外2个OC的双OC环形腔组成。基于游标原理,非对称线形复合四腔可以实现激光SLM选择。双OC环形腔作为窄带滤波器,进一步确保激光器长时间SLM稳定运行。采用放大的1567 nm激光泵浦掺铥光纤,当泵浦功率为2.80 W时,激光输出中心波长为2049.160 nm,输出功率为15.47 mW,光信噪比高达75.65 dB,200 min测量时间内波长和功率波动分别小于0.005 nm和0.85 dB,10 min测量时间内激光可以保持稳定的SLM运行,激光器的阈值泵浦功率和斜率效率分别为1.75 W和1.43%。提出的TDFL在自由空间光通信、激光雷达、光学传感等领域具有潜在的应用价值。  相似文献   

13.
报道了一个三级主振荡功率放大(MOPA)结构的瓦级皮秒光纤激光器.第一级利用半导体可饱和吸收镜(SESAM)和光纤光栅组成线性腔,构建了一个低功率的被动锁模掺Yb3+光纤激光器,其最大平均输出功率为9.2 mW,作为整个激光器的种子源;第二级采用单模掺镱光纤放大器对种子光进行预放大,得到108 mW平均输出功率;第三级采用带树状耦合器的双包层掺镱光纤放大器进行功率放大,获得了1.9 W平均输出功率.得到的脉冲脉宽36 ps,中心波长1064 nm,重复频率29.6 MHz,峰值功率1.8 kW,相应的单脉冲能量为61 nJ.实验中观察到种子源输出光谱中有一个凹陷,这是由于光纤光栅反射率过高并且带宽较窄引起的.  相似文献   

14.
研究了一种基于光纤Sagnac环镜的多波长线性腔掺铥光纤激光器.该激光器采用1.5 m长的双包层掺铥光纤为增益介质,793 nm激光二极管为泵浦源,光纤Sagnac环镜和光纤环形镜构成激光器谐振腔.通过增加泵浦功率和调节偏振控制器,在1949~1976 nm的光谱范围内实现了1~7个波长的激光输出,输出功率达毫瓦量级,光信噪比达到40~50 dB.  相似文献   

15.
基于主振荡功率放大(MOPA)结构,搭建了千瓦级掺Yb全光纤放大器。最大泵浦功率为1496 W的条件下,获得了1024 W波长1.08μm的基模连续激光输出,光-光转换效率68.5%,光束质量M2=1.24。对高功率连续光纤放大器中的热效应进行研究,并对于仅由于涂覆层的热损伤引起的功率极限给出了理论模拟。不同散热条件下,对掺Yb光纤横截面上径向的温度分布进行了模拟。通过对20/390μm无源光纤与20/400μm掺Yb光纤的熔接方式进行优化,解决了模拟结果与实验结果不一致的问题,并对该点的冷却进行了实验研究。最终,放大级泵浦光注入处熔接点表面最大温度不超过60℃。  相似文献   

16.
王雄飞  李尧  朱辰  张昆  张利明  张大勇  赵鸿 《激光与红外》2015,45(11):1319-1324
研究实现了一种主振荡功率放大(MOPA)结构的高功率全光纤皮秒级被动锁模掺镱(Yb3+)光纤激光器。种子源为基于半导体可饱和吸收镜(SESAM)的锁模光纤激光器,其为线性腔结构,输出功率为5.97 mW;预放大级采用单模掺镱光纤进行放大,之后经过4倍重复频率倍增系统和两级双包层掺镱光纤放大器,最终实现了平均功率74.3 W,中心波长1063.4 nm,脉冲宽度7.0 ps,重复频率68 MHz的锁模脉冲激光输出。实验中通过对种子光的处理和光纤长度的控制,未出现受激布里渊散射(SBS)、受激拉曼散射(SRS)等非线性效应。  相似文献   

17.
百瓦级高重复频率窄脉宽光纤激光器实验研究   总被引:1,自引:1,他引:0  
报道了一种基于主振荡-功率放大( MOPA)方式工作的脉冲光纤激光器.为了获得高重复频率、高峰值功率、高光束质量的激光输出,以自行研制的小型激光二极管(LD)抽运声光Q开关Nd∶GdVO4固体激光器作为种子源,采用两级掺Yb双包层光纤串联结构(光纤纤芯直径分别为20 μm和80 μm),对注入功率为2 W的种子激光信号进行放大.最终获得了平均功率103 W的脉冲激光输出,重复频率50 kHz,脉冲宽度12.7 ns,峰值功率达162 kW,光束质量M2=4.3.  相似文献   

18.
搭建了输出1535nm激光的铒镱共掺光纤放大器,通过注入1064nm信号光以抑制Yb离子波段处的放大自发辐射光,放大后的1535nm最大功率为3.2W。然后利用1535nm激光进行了1570nm种子光纤芯同带抽运铒镱共掺光纤放大实验,研究了在不同功率的抽运光时放大器的输出功率和光谱。当种子光功率为80mW,铒镱共掺光纤长度为5m,1535nm抽运光为2.1W时,放大器最大输出功率为1.22W,斜率效率为58.4%。同时进行了常规的976nm包层抽运1570nm种子光的对比实验。基于同一种子光和相同长度的增益光纤,常规抽运方式的斜率效率为23.7%。实验结果证明了同带抽运方式具有更高的转换效率。  相似文献   

19.
全光纤结构主振荡功率放大型掺镱脉冲光纤激光器   总被引:2,自引:1,他引:2  
报道了一台全光纤结构主振荡功率放大(MOPA)型掺镱脉冲光纤激光器.种子源是工作波长为1064 nm的声光调Q光纤激光器,可以获得重复频率在20~50 kHz间可调、平均输出功率约2 W的随机偏振脉冲种子激光.以大直径保偏(PM)光纤作为增益介质,在6个单管功率10 W,波长为915 nm的半导体激光器抽运下,种子激光经过一级放大最终获得平均输出功率23.5 W.脉冲宽度约为30 ns,偏振抑制比超过10 dB,光束质量因子M2为1.36的线偏振单模脉冲激光输出.讨论了大直径保偏光纤与种子激光输出光纤的模场不匹配性对输出激光的光束质量和光谱特性的影响.  相似文献   

20.
基于简化的二能级激光系统和均匀展宽理论模型,利用原子速率方程和功率传输方程建立了掺铥光纤激光器的理论模型,并以环形腔掺铥光纤激光器为例,通过Matlab编程数值模拟研究了其出射功率和波长调谐范围与腔内损耗、掺铥光纤长度、输出耦合比、泵浦波长和泵浦功率等激光器参量的关系。数值模拟结果表明,降低激光器腔内损耗、提高泵浦激光功率和优化掺铥光纤长度可以提高掺铥光纤激光器的出射功率和增加波长调谐范围,而增加输出耦合比虽能提高激光功率,却减小了波长调谐范围。经过参数优化,在腔内总损耗为3dB、输出耦合比为10%的情况下,通过提高泵浦激光功率和优化掺铥光纤长度,掺铥光纤激光器的波长调谐范围可达528nm(1660~2188nm),高于目前已报道的实验结果。将部分模拟结果与文献报道的实验结果进行对比,较好地证实了模型的准确性。研究工作对于掺铥光纤激光器的设计和发展具有重要的理论参考价值和指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号