首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 63 毫秒
1.
利用2010-2019年浙江省暖季(5-9月)1426个国家站和区域站小时雨量数据和NCEP 1° X 1°逐日4次再分析资料,分析了浙江省暖季短时强降水、极端短时强降水时空分布特征及区域性短时强降水事件,结果表明:①近10年暖季短时强降水频次呈增多趋势,降水强度变化平稳;8月(上旬)降水频次最多,9月(中旬)强度最强...  相似文献   

2.
利用丽水地区2004—2014年的加密气象观测站的逐小时降水观测资料,统计分析了丽水地区短时强降水的时空分布特征,同时结合当地地理环境特征,对时空分布特征的成因进行了分析。结果表明:空间上,丽水地区短时强降水主要存在两个活跃区,分别位于东南部地区与西南部高山地区,地形陡峭区、喇叭口等特殊地形有助于短时强降水的发生;小时雨量最大的站点紧邻水库。时间上,从月分布特征来看,丽水地区短时强降水主要发生在5—9月,受汛期降水与热带天气系统影响,峰值分别出现在6月与8月;从日变化特征来看,丽水地区短时强降水主要呈现三峰分布特征,包括一个显著峰值与另外两个不显著峰值,其中主峰发生在午后14:00—22:00,次峰分别在03:00和08:00,不同季节日变化峰值略有不同。此外,小时雨量最大值出现在日落前后,地形导致的局地热力环流对短时强降水有增幅作用。  相似文献   

3.
利用陕西省99个国家级气象站逐小时降水量资料,分析了2005—2018年5—10月陕西短时强降水时空分布特征,结果表明:(1)2005—2018年陕西极值雨强呈振荡减小趋势,7月出现的强降水累计频次最多,而8月极值雨强最大;短时强降水主要发生在午后到夜间,日变化呈单峰分布,强降水频次峰值出现在17—00时,但极值雨强易出现在22—00时。(2)陕南为陕西短时强降水高发区,极值雨强可达40~80 mm/h,镇巴、平利雨强可达90 mm/h;榆林北部特别是西北部短时强降水日数少,极值雨强小,最大不超过50 mm/h;关中平原地区短时强降水日数少,但极值强,最大可达1015 mm/h。5—10月陕西各地区短时强降水日、极值雨强有明显月际差异,7—8月短时强降水出现的范围广,日数多,强度大;5、6和9月范围、日数及强度均较小。(3)陕西各区域短时强降水日变化差异明显,陕北西部、关中西部呈单峰型,陕北东部、关中东部双峰明显,陕南日变化相对较小。陕西极值雨强主要出现在17—23时,关中东部、安康极值雨强多出现在19时,商洛极值雨强多出现在18时。  相似文献   

4.
利用2010~2019年浙江省基准气象站和自动气象站逐小时降水的观测资料,对浙江省短时强降水的时空分布特征进行了统计分析,结果表明:1)2010 ~2019年浙江短时强降水累计发生频次为72601站次,随雨强增大呈指数式衰减。2)短时强降水空间分布不均匀,沿海向内陆发生频次减少,出现频次最高的地区位于温州西南部。夏半年随时间推进和影响系统演变,短时强降水的空间分布亦存在差异:5~6月浙西地区短时强降水多发,7月短时强降水全省分散分布无明显的区域集中特征,8~10月则主要在沿海地区多发。3)总体而言短时强降水的日变化峰值出现在17:00(北京时间,下同),且高强度短时强降水更倾向发生在午后到傍晚时段。夏秋季节短时强降水在午后到傍晚最为多发,峰值出现在17:00至18:00,这与副热带高压强盛,午后到傍晚热力和不稳定条件好,易触发强对流天气有关;春季除午后到傍晚外夜间和凌晨亦为短时强降水多发时段,可能与低空急流多在夜间和早晨发展加强有关。短时强降水的月变化特征呈现类双峰型分布,8月最为多发(26.0%)(主要由台风降水造成),其次为6月和7月。不同强度的短时强降水月变化特征存在较明显差异。而短时强降水的年际分布不均,2015年之后年际变化幅度增大,其中 2016 年短时强降水发生频次最高达8728站次,2017 年为发生频次最低仅5581站次。  相似文献   

5.
利用高密度地面自动站逐小时降水观测资料,分析了河南省2010—2015年雨季(5—9月)短时强降水(flash heavy rain, FHR)的时空分布特征。主要结果如下:河南省FHR集中发生在7、8月,其中7月最多,8月次之;河南雨季FHR量、降水贡献和发生频率的局地差异明显,主要存在4个大值区,即豫北黄河以北地区、豫东商丘地区、豫西南伏牛山以南以东地区、豫南沿淮及其以南地区;地形对降水的增幅作用显著,且主要是通过增加FHR发生频次实现的;FHR频次日变化呈明显的双峰结构,傍晚至凌晨的前半夜为FHR频发时段;4个大值区内FHR频次日变化差异明显,如黄河以北地区其日变化幅度较大、呈单峰型,而沿淮及其以南地区其日变化幅度较小、呈持续活跃型;大部分FHR前后都伴随着连续降水,降水过程的持续时间主要在1~8 h之间,持续时间大于等于3 h的过程主要位于两个与地形密切相关的高频集中区,即伏牛山以东支脉的喇叭口地形区和沿淮及其以南地区。  相似文献   

6.
长江流域(Yangtze River Basin, YZRB)是中国降水集中地。在气候变暖背景下,短时强降水(Short-Duration Heavy Rainfall, SDHR)有增加趋势。2020年主汛期(6—8月)YZRB出现多轮强降水,发生了新中国成立以来仅次于1954年、1998年的流域性大洪水。本文利用中国气象局国家气象信息中心逐小时降水资料,分析了长江上游(YR-A)、长江中游(YR-B)和长江下游(YR-C)三个区域SDHR时空分布以及不同类型短时强降水事件(Short-Duration Heavy Rainfall Event, SDHRE)的统计特征。得到结论如下:1)受地形影响,YZRB山区降水频次增加、降水强度增强,且地形作用会增加山区SDHR的频次,进而增强山区SDHR的降水量;YZRB降水强度的空间分布依赖于SDHR降水量的空间分布。2)YZRB三个区域SDHR降水量和频次的日变化均表现为双峰型,双峰时间在YZRB区域自西向东有从夜间移向白天的趋势,这与对流活动日变化的区域差异有关;SDHR的降水量和频次具有相似的日变化,说明SDHR的降水量主要源自其降水...  相似文献   

7.
都江堰短时强降水时空分布统计分析   总被引:1,自引:0,他引:1  
袁晨  马力 《气象科技》2013,41(6):1086-1090
根据气象观测站逐5 min雨量资料的统计结果,分析了四川都江堰地区短时强降水的时空分布变化特征,结果表明:①都江堰各年1 h雨量极值均出现在较高海拔的地区,且1 h雨量极值在当次降水过程总雨量中所占的比重很高,说明都江堰短时强降水的强度非常集中;②受地形与夜间云顶辐射冷却作用,都江堰短时强降水的夜雨特征突出,且后半夜比前半夜多;③都江堰地区夏季的对流过程一般是沿西北山脉迎风坡生成与发展的,随后对流系统发展到东南平原地区;④都江堰短时强降水主要集中在60~130 min,最长可持续210 min。  相似文献   

8.
基于2013~2020年乐山地区9个国家自动站和136个区域自动站逐小时降水资料,应用诊断分析方法,系统研究了乐山地区短时强降水的时空分布及变化特征,探讨了短时强降水发生频次与地形因子的关系。结果表明:乐山地区短时强降水年均频次和极值均呈增加的趋势,强度较为稳定,变率不大。短时强降水在3~10月均有发生,其频次月分布呈现出单峰型的特征,集中发生在7~8月,占全年的77.7%,7月下旬~8月上旬发生频次又占7~8月总量的49.8%。短时强降水频次日变化呈单峰单谷结构,夜间发生概率最大,白天发生概率相对较小,22时~次日04时是短时强降水集中高发时段,虽然短时强降水在午后和傍晚的发生概率相对较小,但其强度较强,也应当引起重视。乐山地区短时强降水空间分布差异较大,存在两级分化的特点,与地形关系密切,总体呈西南部和东北部少、西北部—中部—东南部多的分布特征。短时强降水的发生与经纬度、海拔高度等地形因子显著相关,高发区主要集中在山谷喇叭口、岷江流域的河谷地带及城市热岛区。  相似文献   

9.
10.
杨学斌  代玉田  王宁  周成 《山东气象》2018,38(2):103-109
利用山东2006—2015年5—9月123个国家级气象观测站10 a逐小时降水量资料,统计分析了山东短时强降水的时空分布特征,结果表明:1)站次时空分布不均。鲁南易出现短时强降水,2013年最多,达到了564站次,7月最多,平均207站次,多出现在傍晚前后和凌晨。2)极值时空分布差异较大。10 a单站极值大值区分布在鲁西北、鲁南和半岛东部,2009年最多,为17站,且多夜间发生;10 a中年度极值均出现在13:00—次日02:00,8月最多,为7次。3)5、6、9月局地和小范围短时强降水天气过程所占比例较大,7—8月大范围短时强降水过程明显增加。  相似文献   

11.
张凯静  江敦双  丁锋 《山东气象》2018,38(1):108-114
利用1981—2012年4—10月青岛市7个观测站逐时降水量资料和同期NCEP再分析资料,统计分析青岛市短时强降水的时空分布特征,建立青岛市短时强降水天气概念模型。结果表明:青岛市年短时强降水日数无明显变化趋势;4—10月均有短时强降水出现,7—8月是多发月份;短时强降水的日变化有2个多发时段,主峰在下午到傍晚时段,次峰在凌晨时段;即墨、平度、黄岛为青岛市短时强降水的多发区域,其中黄岛为连续性短时强降水出现最多的区域;青岛市产生短时强降水的天气系统可分为六种类型,西风槽型、横槽型、冷涡型、热带低值系统型、西北气流型、切变线型,其中西风槽型出现次数最多。  相似文献   

12.
高帆  尹承美  蔡哲  焦洋  褚颖佳  李瑞  马蕾 《山东气象》2019,39(1):131-141
利用常规天气资料、多普勒雷达资料和区域自动气象站资料,对发生在济南的33次重大短时强降水过程进行总结分析。结果表明,重大短时强降水过程年均发生3.3次,主要发生在7月上旬—8月中旬,17—23时和02—08时最易发生,南部山区较北部平原地区更易发生,且雨强更大。低槽冷锋型出现最多,水汽和动力条件充足,层结曲线中上层具有喇叭口型结构,对流有效位能呈瘦高状,平均值为1 370 J·kg-1,对流由冷锋触发(有时存在暖区对流),强降水范围最广;副热带高压边缘型水汽充沛,对流有效位能呈粗胖状,平均值为2 400 J·kg-1,对流由底层的动力系统触发,局地性和突发性强,强降水分布不均匀;低涡切变线型具有夜雨性,水汽较充沛,动力条件一般,对流有效位能平均值为607 J·kg-1。低槽冷锋型和低涡切变线型平均雨强较大,副热带高压边缘型持续时间较长,低槽冷锋型能够产生平均雨强异常大或持续时间较长的过程,因此易出现极端降水事件。带状回波出现最多,主要由低槽冷锋型产生,块状回波主要由副热带高压边缘型产生,分布零散,絮状回波主要由低涡切变线型产生,强度较弱。强回波主要集中在中低层,回波整体质心偏低,呈现热带降水型特征。10次形成列车效应的过程中有7次由带状回波或短带回波的后向传播形成,另外3次由尺度较大的絮状回波形成,其持续时间和平均降水量是其余过程的两倍。  相似文献   

13.
利用鲁中地区2001—2016年伴随瞬时风力不低于8级的所有强对流天气个例共106次进行分析,总结其气候特征,并通过箱须图的形式研究了分类强对流天气相关环境参数的分布特征和预报阈值。结果表明:2001—2016年强对流天气分布呈山区多、平原少、中部多、北部和西南部少的特点;6月和6月中旬是主要月份和旬份;地面辐合线是最主要触发机制类型;雷暴大风型、冰雹雷暴大风型和强降水混合型对应的地面和850 hPa的平均温度露点差,0~1 km和0~3 km垂直风切变,SWEAT指数、LI指数、K指数、风暴相对螺旋度、高度指数等环境参数各有不同的最低阈值;鲁中地区易发生强对流天气的0 ℃层高度为4.1 km左右;对于伴随冰雹的强对流天气,其融化层高度比0 ℃层高度低0.6 km左右。根据以上环境参数的分布特征、高低空垂直风切变的强弱变化可对3类强对流天气进行一定程度的区分。  相似文献   

14.
采用高空和地面观测资料,对山东1999—2013年24次有相态逆转降雪过程的影响系统、出现时间、逆转前后的温度变化及各类系统逆转的天气形势特征进行了统计分析。结果表明:1)低槽冷锋、江淮气旋、黄河气旋和暖切变线可在山东产生降水相态逆转,而回流形势降雪不会产生逆转。2)山东降水相态逆转发生在11月—次年4月,以12月和1月居多,12月频率最高;有明显的日变化,14时前后最容易发生逆转,而23时—次日05时最少。3)雪转雨时最显著的特征为地面2 m气温升高,升温幅度多在1~2 ℃;850 hPa以下至地面的温度至少有1~2个层次升温。4)地面2 m气温对逆转的指示性最好,降雪时在0 ℃左右,略高于通常降雪阈值,最低为-1 ℃;其次为1 000 hPa,降雪时接近于0 ℃。5)对流层低层暖平流升温或温度日变化升温导致雪转雨,温度平流弱时温度日变化起主要作用。各类天气系统的逆转范围、时段等有明显差异。因此,对于降雪阈值附近的相态预报,需综合考虑低层温度平流和日变化两个因素,重点关注地面2 m气温能否升温,午后为关键时段。  相似文献   

15.
山东省极端强降水天气概念模型研究   总被引:4,自引:0,他引:4       下载免费PDF全文
利用山东省1971—1999年逐日降水资料,采用百分位法确定各站极端强降水阈值。据此阈值,在2000—2009年中挑选了39个极端强降水天气过程并进行天气分型,得到高空槽类、副高外围类、切变线类、气旋类、热带气旋类5类极端强降水概念模型。研究表明:切变线类、气旋类和热带气旋类暴雨区范围较大,而高空槽类和副高外围类暴雨区范围较零散;5类极端强降水均伴有低空急流,暴雨区一般位于700 hPa与850 hPa切变线(或槽线)之间、低空急流左侧风向风速辐合处;高空槽类、副高外围类、切变线类一型和气旋类均有冷空气影响,暴雨区位于850 hPa冷温度槽前部;5类极端强降水的产生机制不同,落区与θse的配置也不尽相同。  相似文献   

16.
苏锦兰  张万诚  宋金梅  徐安伦 《气象》2021,47(2):133-142
利用2005—2018年125个国家级台站小时降水观测数据研究云南小时降水时空分布特征。结果表明:云南年总降水量、不同持续时间降水量、极端强降水量及降水日变化空间分布差异很大。年降水量自西北向南增加,雨强自北向南增强,降水时长西部大于东部、南部略大于北部,年降水量受降水时长和雨强共同影响,降水时长影响最强,雨强影响较弱,这种特征在滇西北最突出,但滇东北的降水量与雨强相关更好。云南大部夜雨量多于昼雨量,滇东北和北部边缘夜雨特征最显著;降水日变化特征在云南北部为夜间单峰,西部边缘为清晨单峰,中部为夜间与午后峰值相当的双峰,南部也为夜间和午后双峰,但南部不同区域间主峰和次峰出现时间不同。云南南部降水贡献以短、中历时降水为主,北部则以长、超长历时降水为主。云南短时强降水发生次数的空间分布表现为自西北向东南增加;年发生站次数具有增加趋势,日变化特征为显著单峰,多在傍晚至入夜出现,且极端短时强降水更易在凌晨出现。这些小时降水时空分布特征很大程度上代表了低纬高原地区的降水特征。由于低值天气系统多影响低纬高原中北部,热带天气系统多影响南部,且低纬高原地形复杂,局地热力条件差异明显,这些因素造成该区域小时降水时空分布特征差异显著。  相似文献   

17.
利用江苏近10 a(2005—2014年)暖季(5—9月)69站逐时降水资料,详细分析了短时强降水的空间分布、年际变化、季节内演变以及日变化特征。分析结果表明:短时强降水空间分布不均,整体上北部比南部活跃,最活跃区均位于沿淮西部,高强度短时强降水多发生在淮北东部,且空间分布集中。近10 a来江苏短时强降水整体呈减少趋势,主要表现为北部地区减少最为显著。短时强降水季节内分布不均匀,以7月最为活跃,高强度短时强降水在8月最为频繁;其逐候分布显示,梅期短时强降水骤增,于7月第2候达到峰值,盛夏期间高强度短时强降水增多,8月第3候达到峰值。江苏短时强降水的日变化整体呈双峰结构,主峰和次峰分别出现在傍晚17时(北京时间,下同)和清晨07时,高强度短时强降水多发于午后;短时强降水日变化存在季节内演变的阶段性特征和地域性差异,其中梅期和盛夏两个高发阶段均呈单峰结构,但梅期峰值出现在清晨,盛夏阶段峰值则出现在傍晚;由南向北,日变化特征由单峰向双峰、多峰演变,在淮河以南地区日峰值大多出现在午后至傍晚,而淮河以北地区多出现在夜间至清晨。  相似文献   

18.
京津冀及周边地区为我国北方强降水的多发区域。基于1966—2021年87个国家级气象站逐小时降水资料对比分析暖季5—9月一般性降水和短时强降水的空间分布及年际变化,并基于1980—2021年298个气象站分析日变化等特征。结果表明:京津冀及周边地区的渤海西侧平原区域存在短时强降水强度极端性显著区域。渤海西侧平原以外区域两类降水平均小时降水量、强度和降水时次百分比均呈增长趋势,但短时强降水的增幅更高,而渤海西侧平原区域趋势则均不明显。渤海西侧平原区域和渤海西侧平原以外区域的一般性降水平均小时降水量和降水时次百分比日变化幅度显著弱于短时强降水;7—9月渤海西侧平原区域降水夜发性更明显,且相比另一区域半峰持续时间多出约2 h。2005年后渤海西侧平原区域和渤海西侧平原以外区域短时强降水平均小时降水量和降水时次百分比下午时段均明显减弱,但午夜后至清晨明显增加。  相似文献   

19.
在全球持续增温的背景下,极端降水事件频发,给人民的生产生活和社会的经济发展造成了严重威胁。本文利用华东315个气象台站2011—2018年的小时观测数据,按照降水日峰值特征将华东地区极端小时降水分为单峰型和多峰型,基于多尺度地理加权回归模型,探讨了两种峰型极端小时降水空间分布与地形因子的关系。研究表明两种峰型极端降水分别对应常规年份和厄尔尼诺年,地形起伏度在两类峰型的降水中都为最重要的地形因子,主导区域主要为浙江北部及浙闽山脉北部;其他地形因子在两类峰型的降水中作用存在显著差异。单峰型降水中,第二重要的地形因子为地形坡度,主导区域位于浙闽山脉东南侧;而在多峰型降水中,第二重要的地形因子为离海岸线距离,且主导区域位于沿海地区。对二者差异的机理分析发现,单峰型降水以午后对流为主,浙闽山脉东南侧地形坡度较大处的对流有效位能值较大,容易促发对流;而在多峰型降水中清晨降水以平流为主,水汽输送明显较单峰型降水大,因此,离海岸线距离对该类型降水有重要影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号