首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 609 毫秒
1.
压缩载荷下复合材料整体加筋板渐进损伤非线性数值分析   总被引:3,自引:0,他引:3  
建立了考虑脱粘的复合材料整体加筋板渐进损伤有限元分析模型。该模型采用界面单元模拟筋条与壁板之间的连接界面, 连接界面和复合材料层板分别采用Quads准则和Hashin准则作为失效判据, 基于ABAQUS软件, 建立了含连续损伤状态变量的材料刚度退化方案。基于该模型, 采用非线性有限元方法研究了压缩载荷下复合材料整体加筋壁板在考虑初始几何缺陷时的破坏过程, 分析了结构相应失效模式的细观损伤机制; 详细讨论了轴向刚度比对结构承载能力及破坏模式的影响。结果表明: 考虑脱粘损伤的有限元模型能有效模拟加筋板的破坏过程; 在加筋板铺层设计合理的情况下, 增加筋条与壁板刚度比能有效提高加筋板截面单位面积的承载能力。   相似文献   

2.
建立了复合材料层合加筋壁板的屈曲后屈曲有限元分析模型。该模型采用界面单元以有效模拟筋条和壁板之间的连接界面, 连接界面和复合材料层板分别采用Quads和Hashin失效准则作为失效判据, 引入材料刚度退化模型, 采用非线性有限元方法, 研究了复合材料加筋壁板在压缩载荷下的前后屈曲平衡路径及破坏过程。数值分析结果与实验结果吻合良好, 证明了该方法的合理有效性。详细探讨了筋条尺寸及界面单元强度等参数对加筋壁板屈曲后屈曲行为及承载能力的影响规律, 研究表明增加筋条截面惯性矩及筋条密度在一定程度上能有效提高加筋板的屈曲载荷与极限强度, 筋条密度增加到一定程度会引起结构破坏形式由失稳破坏?湮顾跗苹? 界面强度与铺层方式对极限强度有重要影响, 界面脱粘是引起加筋板最终破坏的重要因素。   相似文献   

3.
复合材料帽型加筋壁板的失效机制分析与改进设计   总被引:2,自引:0,他引:2       下载免费PDF全文
为了准确预测复合材料帽型加筋壁板的后屈曲承载能力,针对压缩载荷下筋条端头斜削的复合材料帽型加筋壁板结构的失效机制及失效载荷进行了研究。首先利用物理试验,研究了端头斜削的复合材料帽型加筋壁板失效过程,然后构建了考虑蒙皮/缘条胶接界面以及复合材料层板失效的非线性损伤分析模型,详细地研究了损伤起始、扩展和失效的全过程。在此基础上,提出了包覆层对蒙皮/缘条界面进行增强的设计方案,并基于数值仿真和试验研究了包覆层对复合材料帽型壁板的破坏模式和承载能力的影响。数值分析和试验结果表明,包覆层设计能够明显提高结构的屈曲载荷和后屈曲承载能力,分析结果与试验值吻合良好,且预测的破坏模式也与试验结果一致。  相似文献   

4.
纤维增强复合材料层板高速冲击损伤数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
推导了复合材料应变率相关三维本构关系, 并将其用于复合材料层板高速冲击损伤的数值模拟。该模型在复合材料层间引入界面单元模拟层间分层, 结合三维Hashin失效准则进行单层板面内损伤识别, 引入材料刚度退化, 采用非线性有限元方法, 研究了复合材料层板高速冲击的破坏过程及层板的损伤特性。数值分析结果表明, 剩余速度预报结果与实验结果吻合较好, 层板的主要损伤形式是层间分层、 基体微裂纹和纤维断裂, 减小弹体直径、 增大铺层角度和层板厚度能够有效降低层板损伤面积。   相似文献   

5.
不同形状弹体高速冲击下复合材料层板损伤分析   总被引:1,自引:0,他引:1       下载免费PDF全文
古兴瑾  许希武 《工程力学》2013,30(1):432-440
根据纤维增强复合材料宏细观结构,基于纤维的线弹性假设和基体的粘弹性假设,推导了单向复合材料粘弹性损伤本构关系。在此基础上,结合Hashin失效准则进行单层板面内损伤识别,通过界面单元模拟层间分层损伤,采用非线性有限元方法,建立了复合材料层板高速冲击损伤有限元分析模型。利用该模型,深入研究了不同形状弹体高速冲击下复合材料层板的弹道性能和损伤特性,探讨了相关参数对冲击损伤的影响规律,获得了一些有价值的结论。  相似文献   

6.
缝合复合材料层板低速冲击损伤数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
建立了缝合复合材料层板在低速冲击载荷下的渐进损伤分析模型。模型中采用空间杆单元模拟缝线的作用;采用三维实体单元模拟缝合层板,通过基于应变描述的Hashin准则,结合相应的材料性能退化方案模拟层板的损伤和演化;采用界面单元模拟层间界面,结合传统的应力失效判据和断裂力学中的应变能释放率准则判断分层的起始和扩展规律。通过对碳800环氧树脂复合材料(T800/5228)层板的数值仿真结果和试验结果相比较,验证了模型的正确性,同时讨论了不同冲击能量下缝合层板的损伤规律。研究结果表明:缝线能够有效地抑制层板的分层损伤扩展;相同冲击能量下缝合与未缝合层板的基体损伤和纤维损伤在厚度分布上相似,缝合层板的损伤都要小于未缝合层板。  相似文献   

7.
为准确预测复合材料盒段的损伤起始和破坏过程,针对复合材料整体化多墙盒段研究了考虑材料失效的渐进损伤有限元分析技术。首先基于ABAQUS软件,利用标准试验获得的材料力学性能建立了盒段渐进损伤分析模型,分别采用三维Hashin失效准则和平方应力失效准则作为复合材料层板和连接界面的失效判据;然后,基于该模型完成了复合材料整体化多墙盒段后屈曲承载能力的求解,并利用破坏试验对分析模型进行验证。结果表明:结构承载能力和应力的有限元分析结果与试验值吻合良好,预测的失效模式也与试验结果一致,屈曲载荷和承载能力误差在5%以内。所得结论表明考虑层板失效和界面脱粘的分析模型能有效模拟整体化多墙盒段的破坏过程。   相似文献   

8.
根据复合材料三维黏弹性本构关系, 建立了纤维增强复合材料层板高速倾斜冲击损伤的数值分析模型。该模型在复合材料层间引入界面单元模拟层间分层, 结合三维Hashin失效准则进行单层板面内损伤识别, 引入材料刚度折减方案, 采用非线性有限元方法, 研究高速倾斜冲击下复合材料层板的破坏过程和损伤特性。研究结果表明: 层板的主要损伤形式是层间分层、 基体微裂纹和纤维断裂; 冲击速度不变而入射角度增大时, 剩余速度减小, 层板损伤面积在一定入射角度范围内有明显变化; 入射角度不变而冲击速度增大时, 剩余速度增大, 层板损伤面积在一定速度范围内也有明显变化。  相似文献   

9.
根据复合材料三维黏弹性本构关系,建立了纤维增强复合材料层板高速倾斜冲击损伤的数值分析模型.该模型在复合材料层间引入界面单元模拟层间分层,结合三维Hashin失效准则进行单层板面内损伤识别,引入材料刚度折减方案,采用菲线性有限元方法,研究高速倾斜冲击下复合材料层板的破坏过程和损伤特性.研究结果表明:层板的主要损伤形式是层间分层、基体微裂纹和纤维断裂;冲击速度不变而入射角度增大时,剩余速度减小,层板损伤面积在一定入射角度范围内有明显变化;入射角度不变而冲击速度增大时,剩余速度增大,层板损伤面积在一定速度范围内也有明显变化.  相似文献   

10.
低速冲击作用下碳纤维复合材料铺层板的损伤分析   总被引:11,自引:4,他引:7       下载免费PDF全文
建立了一个有效计算模型, 以分析碳纤维复合材料层合板在低速冲击作用下的层内和层间失效行为。针对铺层板的层内损伤, 在基于应变描述的Hashin 失效准则的基础上, 建立了单层板的逐渐累积损伤分析模型;针对铺层板的脱层损伤, 建立了各向同性脱层损伤模型, 通过结合传统的应力失效准则和断裂力学中的能量释放率准则定义了界面损伤演化规律, 并在潜在产生脱层的区域模拟为粘结接触, 并将脱层损伤模型作为界面的接触行为。该计算模型通过商用有限元软件ABAQUS/ Explicit 的用户子程序实现。使用该计算模型对碳纤维增强环氧树脂复合材料层合板在横向低速冲击作用下的损伤和变形行为进行预测分析。数值仿真的结果与试验结果进行了比较, 取得了满意的结果, 验证了该模型的正确性。   相似文献   

11.
通过在代表性体积胞元(RVE)中嵌入内聚力面,建立了基于连续损伤力学的高抗冲聚苯乙烯多处银纹化细观机理模型。采用Quads准则作为内聚力面失效判据,引入材料刚度退化模型,利用非线性有限元方法研究了在单向拉伸载荷下高抗冲聚苯乙烯中银纹的萌生、生长和断裂过程及其规律。数值分析结果与实验中观察到的现象吻合较好,表明了本模型描述的内聚力面模拟银纹化过程的合理性。  相似文献   

12.
To predict the crashworthy composite corrugated plate, different single and stacked shell models are evaluated and compared, and a stacked shell progressive damage model combined with continuum damage mechanics is proposed and investigated. To simulate and predict the failure behavior, both of the intra- and inter- laminar failure behavior are considered. The tiebreak contact method, 1D spot weld element and cohesive element are adopted in stacked shell model, and a surface-based cohesive behavior is used to capture delamination in the proposed model. The impact load and failure behavior of purposed and conventional progressive damage models are demonstrated. Results show that the single shell could simulate the impact load curve without the delamination simulation ability. The general stacked shell model could simulate the interlaminar failure behavior. The improved stacked shell model with continuum damage mechanics and cohesive element not only agree well with the impact load, but also capture the fiber, matrix debonding, and interlaminar failure of composite structure.  相似文献   

13.
Multi-scale dynamic failure prediction tool for marine composite structures   总被引:2,自引:0,他引:2  
A high fidelity assessment of accumulative damage of woven fabric composite structures subjected to aggressive loadings is strongly reliant on the accurate characterization of the inherent multi-scale microstructures and the underlying deformation phenomena. Damage in composite sandwich and joint structures is characterized by the coexistence of discrete (delamination) and continuum damage (matrix cracking and intralaminar damage). A purely fracture mechanics-based or a purely continuum damage mechanics-based tool alone cannot effectively characterize the interaction between the discrete and continuum damage and their compounding effect that leads to the final rupture. In this paper, a hybrid discrete and continuum damage model is developed and numerically implemented within the LS-DYNA environment via a user-defined material model. The continuum damage progression and its associated stiffness degradation are predicted based on the constituent stress/strain and their associated failure criteria while the discrete delamination damage is captured via a cohesive interface model. A multi-scale computational framework is established to bridge the response and failure predictions at constituent, ply, and laminated composite level. The calculated constituent stress and strain are used in a mechanism-driven failure criterion to predict the failure mode, failure sequence, and the synergistic interaction that leads to global stiffness degradation and the final rupture. The use of the cohesive interface model can capture the complicated delamination zone without posing the self-similar crack growth condition. The unified depiction of the continuum and discrete damage via the damage mechanics theory provides a rational way to study the coupling effects between the in-plane and the out-of-plane failure modes. The applicability and accuracy of the damage models used in the hybrid dynamic failure prediction tool are demonstrated via its application to a circular plate and a composite hat stiffener subjected to shock and low velocity impact loading. The synergistic interaction between the continuum and discrete damage is explored via its application to a sandwich beam subjected to a low velocity impact.  相似文献   

14.
A finite element (FE) model using coupling continuum shell elements and cohesive elements is proposed to simulate the compression after impact (CAI) behaviour and predict the CAI strength of stitched composites. Continuum shell elements with Hashin failure criterion exhibit the composite laminate damage behaviour; whilst cohesive elements using traction-separation law characterise the laminate interfaces. Impact-induced delamination is explicitly modelled by reducing material properties of damaged cohesive elements. Computational results have demonstrated the trend of increasing CAI strength with decreasing impact-induced delamination area. Spring elements are introduced into the model to represent through-thickness stitch thread in the composite laminates. Results in this study validate experimental finding that CAI strength is improved when stitching is incorporated into the composite structure. The proposed FE model reveals good CAI strength predictions and indicates good agreement with experimental results, making it a valuable tool for CAI strength prediction of stitched composites.  相似文献   

15.
This paper investigates the capability of a three-dimensional finite element model with damaging material behaviour, cohesive elements and damage regularisation to simulate complex damage patterns in fibre metal laminate (FML) joints. The model incorporates a three-dimensional continuum damage mechanics approach for the composite plies, a plasticity model for the aluminium layers, and a delamination model between layers. A nonlocal averaging scheme is implemented to mitigate the mesh sensitivity that occurs with strain-softening material models. Bearing stress-strain responses and variations in stiffness are calculated, and damage progression is described in detail for all plies and interfaces. Microscopy and stress-strain data from a parallel series of experimental tests are presented, and damage and failure phenomena observed in the tests are compared with the model. Generally, good agreement between model and tests was achieved but certain limitations of the numerical model were observed and are discussed. The combined numerical and experimental information provide a detailed understanding of the failure sequence of FML joints.  相似文献   

16.
A new model for prediction of fatigue-driven delamination in laminated composites is proposed using cohesive interface elements. The presented model provides a link between cohesive elements damage evolution rate and crack growth rate of Paris law. This is beneficial since no additional material parameters are required and the well-known Paris law constants are used. The link between the cohesive zone method and fracture mechanics is achieved without use of effective length which has led to more accurate results. The problem of unknown failure path in calculation of the energy release rate is solved by imposing a condition on the damage model which leads to completely vertical failure path. A global measure of energy release rate is used for the whole cohesive zone which is computationally more efficient compared to previous similar models. The performance of the proposed model is investigated by simulation of well-known delamination tests and comparison against experimental data of the literature.  相似文献   

17.
含分层复合材料层板的压缩性能   总被引:1,自引:0,他引:1  
使用商用有限元软件建立了含分层复合材料层板的有限元模型,采用Hashin失效准则对层板内单元进行损伤判断,并编写程序对失效单元进行刚度折减,使用cohesive单元模拟层间区域,并对缺陷区域进行弱化处理,利用应力失效判据和能量释放准则判断层板内起始分层与分层的扩展。对完好以及含分层缺陷复合材料单向层板试验件进行压缩实验研究,实验结果给出了分层位置和尺寸及对材料压缩性能的影响。研究表明,有限元模拟结果与实验结果具有良好的一致性。  相似文献   

18.
复合材料层合板低速冲击损伤的有限元模拟   总被引:6,自引:2,他引:4       下载免费PDF全文
建立了用于预测复合材料层合板在低速冲击作用下损伤的3D有限元模型。采用应变描述的失效判据来判断铺层层内的各类损伤, 如纤维断裂、 纤维挤压、 基体开裂、 基体挤裂, 并结合相应的刚度折减方案对失效单元进行刚度折减。使用界面元模拟层间区域, 结合传统的应力失效判据和断裂力学中的能量释放率准则来定义分层损伤的起始和演化规律, 提出了一种界面元损伤起始强度沿厚度方向的分布函数。通过对数值仿真结果和实验结果的比较, 验证了模型的合理性和准确性。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号