首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the stability and composition of potassiumamphibole and its high-pressure breakdown product phase X insynthetic peralkaline and subalkaline KNCMASH (K2O–Na2O–CaO–MgO–Al2O3–SiO2–H2O)and natural KLB-1 peridotite bulk compositions between 10 and23 GPa at 800–1800°C. In the KNCMASH system, potassiumamphibole reaches its upper pressure stability limit at 13–15GPa at  相似文献   

2.
Petrogenetic grids in the system NCKFMASH (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O)and the subsystems NCKMASH and NCKFASH calculated with the softwareTHERMOCALC 3.1 are presented for the PT range 7–30kbar and 450–680°C, for assemblages involving garnet,chloritoid, biotite, carpholite, talc, chlorite, kyanite, staurolite,paragonite, glaucophane, jadeite, omphacite, diopsidic pyroxene,plagioclase, zoisite and lawsonite, with phengite, quartz/coesiteand H2O in excess. These grids, together with calculated compatibilitydiagrams and PT and TXCa and PXCa pseudosectionsfor different bulk-rock compositions, show that incorporationof Ca into the NKFMASH system leads to many of the NKFMASH invariantequilibria moving to lower pressure and/or lower temperature,which results, in most cases, in the stability of jadeite andgarnet being enlarged, but in the reduction of stability ofglaucophane, plagioclase and AFM phases. The effect of Ca onthe stability of paragonite is dependent on mineral assemblageat different PT conditions. The calculated NCKFMASH diagramsare powerful in delineating the phase equilibria and PTconditions of natural pelitic assemblages. Moreover, contoursof the calculated phengite Si isopleths in PT and PXCapseudosections confirm that phengite barometry in NCKFMASH isstrongly dependent on mineral assemblage. KEY WORDS: phase relations; metapelites; NCKFMASH; THERMOCALC; phengite geobarometry  相似文献   

3.
We document experiments on a natural metapelite in the range650–775°C, 6–14 kbar, 10 wt % of added water,and 700–850°C, 4–10 kbar, no added water. Staurolitesystematically formed in the fluid-present melting experimentsabove 675°C, but formed only sporadically in the fluid-absentmelting experiments. The analysis of textures, phase assemblages,and variation of phase composition and Fe–Mg partitioningwith P and T suggests that supersolidus staurolite formed at(near-) equilibrium during fluid-present melting reactions.The experimental results are used to work out the phase relationsin the system K2O–Na2O–FeO–MgO–Al2O3–SiO2–H2Oappropriate for initial melting of metapelites at the upperamphibolite facies. The PT grid developed predicts theexistence of a stable PT field for supersolidus staurolitethat should be encountered by aluminous Fe-rich metapelitesduring fluid-present melting at relatively low temperature andintermediate pressures (675–700°C, 6–10 kbarfor XH2O = 1, in the KNFMASH system), but not during fluid-absentmelting. The implications of these findings for the scarcityof staurolite in migmatites are discussed. KEY WORDS: metapelites; migmatites; partial melting; PT grid; staurolite  相似文献   

4.
The Diahot terrane of NE New Caledonia contains an interbeddedsequence of Cretaceous to Eocene metasediments, felsic and maficmetavolcanics that experienced c. 40 Ma high-P/T metamorphism.Metabasaltic assemblages define two prograde events (M1 andM2) and a tectonically disrupted crustal profile that extendsfrom lawsonite–blueschist conditions in the SW to paragonite–eclogiteconditions in the NE. Weakly deformed metabasalts from lowest-gradeparts of the Diahot terrane contain M1 omphacite, chlorite,lawsonite and glaucophane-bearing assemblages that partiallypseudomorph igneous plagioclase and augite, and reflect P =0·7–1·0 GPa and T = 350–400°C.M1 assemblages are enveloped by a steeply SW-dipping S2 foliationthat becomes progressively more intense towards the NE overa distance of c. 15 km. S2 assemblages are divided into fourzones: (1) lawsonite–omphacite; (2) lawsonite–clinozoisite–spessartine;(3) clinozoisite–hornblende–almandine; (4) almandine–omphacite.S2 assemblages reflect a PT gradient that spans the exposed15 km of the Diahot terrane from P = 0·8–1·0GPa and T = 350–400°C (Zone 1) to P = 1·6–1·7GPa and T = 550–600°C (Zone 4). The systematic mineralogicalchanges reflect parts of a PT array between 1·0and 1·7 GPa that was extensively disrupted by tectonicthinning during exhumation. KEY WORDS: blueschist; eclogite; New Caledonia; CNFMASH; pseudosection  相似文献   

5.
Experimental studies were carried out to evaluate phase relationsinvolving titanite–F–Al-titanite solid solutionin the system CaSiO3–Al2SiO5–TiO2–CaF2. Theexperiments were conducted at 900–1000°C and 1·1–4·0GPa. The average F/Al ratio in titanite solid solution in theexperimental run products is 1·01 ± 0·06,and XAl ranges from 0·33 ± 0·02 to 0·91± 0·05, consistent with the substitution [TiO2+]–1[AlF2+]1.Analysis of the phase relations indicates that titanite solidsolutions coexisting with rutile are always low in XAl, whereasthe maximum XAl of titanite solid solution occurs with fluoriteand either anorthite or Al2SiO5. Reaction displacement experimentswere performed by adding fluorite to the assemblage anorthite+ rutile = titanite + kyanite. The reaction shifts from 1·60GPa to 1·15 ± 0·05 GPa at 900°C, from1·79 GPa to 1·375 ± 0·025 GPa at1000°C, and from 1·98 GPa to 1·575 ±0·025 GPa at 1100°C. The data show that the activityof CaTiSiO4O is very close to the ideal molecular activity model(XTi) at 1100°C, but shows a negative deviation at 1000°Cand 900°C. The results constrain  相似文献   

6.
Using an internally consistent thermodynamic dataset and updatedmodels of activity–composition relation for solid solutions,petrogenetic grids in the system NKFMASH (Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O)and the subsystems NKMASH and NKFASH have been calculated withthe software THERMOCALC 3.1 in the PT range 5–36kbar and 400–810°C, involving garnet, chloritoid,biotite, carpholite, talc, chlorite, kyanite/sillimanite, staurolite,phengite, paragonite, albite, glaucophane, jadeite, with quartz/coesiteand H2O in excess. These grids, together with calculated AFMcompatibility diagrams and PT pseudosections, are shownto be powerful tools for delineating the phase equilibria andPT conditions of Na-bearing pelitic assemblages for avariety of bulk compositions from high-P terranes around theworld. These calculated equilibria are in good agreement withpetrological studies. Moreover, contours of the calculated phengiteSi isopleths in PT pseudosections for different bulkcompositions confirm that phengite barometry is highly dependenton mineral assemblage. KEY WORDS: phase relations; HP metapelite; NKFMASH; THERMOCALC; phengite geobarometry  相似文献   

7.
The solubility of sulfur as S2– has been experimentallydetermined for 19 silicate melt compositions in the system CaO–MgO–Al2O3–SiO2(CMAS)± TiO2 ± FeO, at 1400°C and 1 bar, using CO–CO2–SO2gas mixtures to vary oxygen fugacity (fO2) and sulfur fugacity(fS2). For all compositions, the S solubility is confirmed tobe proportional to (fS2/fO2)1/2, allowing the definition ofthe sulfide capacity (CS) of a silicate melt as CS = [S](fO2/fS2)1/2.Additional experiments covering over 150 melt compositions,including some with Na and K, were then used to determine CSas a function of melt composition at 1400°C. The resultswere fitted to the equation  相似文献   

8.
A suite of garnetiferous amphibolites and mafic granulites occuras small boudins within layered felsic migmatite gneiss in thenorthern part of the Sausar Mobile Belt (SMB), the latter constitutingthe southern component of the Proterozoic Central Indian TectonicZone (CITZ). Although the two types of metabasites are in variousstages of retrogression, textural, compositional and phase equilibriastudies attest to four distinct metamorphic episodes. The earlyprograde stage (Mo) is represented by an inclusion assemblageof hornblende1 + ilmenite1 + plagioclase1 ± quartz andgrowth zoning preserved in garnet. The peak assemblage (M1)consists of porphyroblastic garnet + clinopyroxene ±quartz ± rutile ± hornblende in mafic granulitesand garnet + quartz + hornblende in amphibolites and stabilizedat pressure–temperature conditions of 9–10 kbarand 750–800°C and 8 kbar and 675°C, respectively.This was followed by near-isothermal decompression (M2), andpost-decompression cooling (M3) events. In mafic granulites,the former resulted in the development of early clinopyroxene2A–hornblende2A–plagioclase2Asymplectites at 8 kbar and 775°C (M2A stage), synchronouswith D2 and later anhydrous clinopyroxene2B–plagioclase2B–ilmenite2Bsymplectites and coronal assemblages at 7 kbar, 750°C (M2Bstage) and post-dating D2. In amphibolites, ilmenite + plagioclase+ quartz ± hornblende symplectites appeared during M2at 6·4 kbar and 700°C. During M3, coronal garnet+ clinopyroxene + quartz ± hornblende-bearing symplectitesin metabasic dykes and hornblende3–plagioclase3 symplectitesembaying garnet in mafic granulites were formed. PT estimatesshow near-isobaric cooling from 7 kbar and 750°C to 6 kbarand 650°C during M3. It is argued that the decompressionin the mafic granulites is not continuous, being punctuatedby a distinct heating (prograde?) event. The latter is alsocoincident with a period of extension, marked by mafic dykeemplacement. The combined PT path of evolution has aclockwise sense and provides evidence for a major phase of earlycontinental subduction in parts of the CITZ. This was followedby a later continent–continent collision event duringwhich granulites of the first phase became tectonically interleavedwith younger lithological units. This tectonothermal event,of possibly Grenvillian age, marks the final amalgamation ofthe North and the South Indian Blocks along the CITZ to producethe Indian subcontinent. KEY WORDS: Central Indian Tectonic Zone; clockwise PT path; continental collision; metabasite  相似文献   

9.
Metapelitic rock samples from the NE Shackleton Range, Antarctica,include garnet with contrasting zonation patterns and two agespectra. Garnet porphyroblasts in K-rich kyanite–sillimanite–staurolite–garnet–muscovite–biotite schistsfrom Lord Nunatak show prograde growth zonation, and give Sm–Ndgarnet, U–Pb monazite and Rb–Sr muscovite ages of518 ± 5, 514 ± 1 and 499 ± 12 Ma, respectively.Geothermobarometry and PT pseudo-section calculationsin the model system CaO–Na2O–K2O– TiO2–MnO–FeO–MgO–Al2O3–SiO2–H2Oare consistent with garnet growth during prograde heating from540°C/7 kbar to 650°C/7·5 kbar, and partial resorptionduring a subsequent PT decrease to <650°C at <6kbar. All data indicate that rocks from Lord Nunatak were affectedby a single orogenic cycle. In contrast, garnet porphyroblastsin K-poor kyanite–sillimanite– staurolite–garnet–cordierite–biotite-schistsfrom Meade Nunatak show two growth stages and diffusion-controlledzonation. Two distinct age groups were obtained. Laser ablationplasma ionization multicollector mass spectrometry in situ analysesof monazite, completely enclosed by a first garnet generation,yield ages of c. 1700 Ma, whereas monazite grains in open garnetfractures and in most matrix domains give c. 500 Ma. Both agegroups are also obtained by U–Pb thermal ionization massspectrometry analyses of matrix monazite and zircon, which fallon a discordia with lower and upper intercepts at 502 ±1 and 1686 ± 2 Ma, respectively. Sm–Nd garnet datingyields an age of 1571 ± 40 Ma and Rb–Sr biotiteanalyses give an age of 504 ± 1 Ma. Integrated geochronologicaland petrological data provide evidence that rocks from MeadeNunatak underwent a polymetamorphic Barrovian-type metamorphism:(1) garnet 1 growth and subsequent diffusive garnet annealingbetween 1700 and 1570 Ma; (2) garnet 2 growth during the RossOrogeny at c. 500 Ma. During the final orogenic event the rocksexperienced peak PT conditions of about 650°C/7·0kbar and a retrograde stage at c. 575°C/4·0 kbar. KEY WORDS: garnet microtexture; PT pseudosection; geochronology; polymetamorphism; Shackleton Range; Antarctica  相似文献   

10.
Alpine-type peridotites and associated pyroxenites are foundas lenses in the continental crust in many different orogens.The reconstruction of the pressure–temperature (P–T)evolution of these rocks is, however, difficult or even impossible.With geothermobarometry, usually one point on the overall P–Tpath can be obtained. To use the different mineral assemblagesobserved in ultramafic rocks as P–T indicators, quantitativeP–T phase diagrams are required. This study presents newcalculated phase diagrams for peridotitic and pyroxenitic rocksin the model systems CaO–MgO–Al2O3–SiO2–H2O(CMASH) and Na2O–CaO–MgO–Al2O3–SiO2–H2O(NCMASH), which include the respective solid solutions as continuousexchange vectors. These phase diagrams represent applicablepetrogenetic grids for peridotite and pyroxenite. On the basisof these general petrogenetic grids, phase diagrams for particularperidotite and pyroxenite bulk compositions are constructed.In an example of pyroxenite from the Shackleton Range, Antarctica,the different observed mineral assemblages are reflected bythe phase diagrams. For these rocks, a high-pressure metamorphicstage around 18 kbar and an anticlockwise P–T evolution,not recognized previously, can be inferred. KEY WORDS: Antarctic; high-pressure metamorphism; peridotite; phase diagrams; pyroxenite  相似文献   

11.
Experiments in the quartz-saturated part of the system KFMASHunder fO2 conditions of the haematite–magnetite bufferand using bulk compositions with XMg of 0·81, 0·72,0·53 define the stability limits of several mineral assemblageswithin the PT field 9–12 kbar, 850–1100°C.The stability limits of the mineral assemblages orthopyroxene+ spinel + cordierite ± sapphirine, orthopyroxene + garnet+ sapphirine, sapphirine + cordierite + orthopyroxene and garnet+ orthopyroxene + spinel have been delineated on the basis ofPT and T–X pseudosections. Sapphirine did not appearin the bulk composition of XMg = 0·53. A partial petrogeneticgrid applicable to high Mg–Al granulites metamorphosedat high fO2, developed in our earlier work, was extended tohigher pressures. The experimental results were successfullyapplied to several high-grade terranes to estimate PTconditions and retrograde PT trajectories. KEY WORDS: KFMASH equilibria; experimental petrogenetic grid at high fO2  相似文献   

12.
The northern margin of the Inland Branch of the Pan-AfricanDamara Orogen in Namibia shows dramatic along-strike variationin metamorphic character during convergence between the Congoand Kalahari Cratons (M3 metamorphic cycle). Low-P contact metamorphismwith anticlockwise PT paths dominates in the westerndomains (Ugab Zone and western Northern Zone), and high-P Barrovianmetamorphism with a clockwise PT path is documented fromthe easternmost domain (eastern Northern Zone). The sequenceof M3 mineral growth in contact aureoles shows early growthof cordierite porphyroblasts that were pseudomorphed to biotite–chlorite–muscoviteat the same time as an andalusite–biotite–muscovitetransposed foliation was developed in the matrix. The peak-Tmetamorphic assemblages and fabrics were overprinted by crenulationsand retrograde chlorite–muscovite. The KFMASH PTpseudosection for metapelites in the Ugab Zone and western NorthernZone contact aureoles indicates tight anticlockwise PTloops through peak metamorphic conditions of 540–570°Cand 2·5–3·2 kbar. These semi-quantitativePT loops are consistent with average PT calculationsusing THERMOCALC, which give a pooled mean of 556 ± 26°Cand 3·2 ± 0·6 kbar, indicating a high averagethermal gradient of 50°C/km. In contrast, the eastern NorthernZone experienced deep burial, high-P/moderate-T Barrovian M3metamorphism with an average thermal gradient of 21°C/kmand peak metamorphic conditions of c. 635°C and 8·7kbar. The calculated PT pseudosection and garnet compositionalisopleths in KFMASH, appropriate for the metapelite sample fromthis region, document a clockwise PT path. Early plagioclase–kyanite–biotiteparageneses evolved by plagioclase consumption and the growthof garnet to increasing XFe, XMg and XCa and decreasing XMncompositions, indicating steep burial with heating. The developedkyanite–garnet–biotite peak metamorphic parageneseswere followed by the resorption of garnet and formation of plagioclasemoats, indicating decompression, which was followed by retrogressivecooling and chlorite–muscovite growth. The clockwise PTloop is consistent with the foreland vergent fold–thrustbelt geometry in this part of the northern margin. Earlier formed(580–570 Ma) pervasive matrix foliations (M2) were overprintedby contact metamorphic parageneses (M3) in the aureoles of 530± 3 Ma granites in the Ugab Zone and 553–514 Magranites in the western Northern Zone. Available geochronologicaldata suggest that convergence between the Congo and KalahariCratons was essentially coeval in all parts of the northernmargin, with similar ages of 535–530 Ma for the main phaseof deformation in the eastern Northern Zone and Northern Platformand 538–505 Ma high-grade metamorphism of the CentralZone immediately to the south. Consequently, NNE–SSW-directedconvergent deformation and associated M3 metamorphism of contrastingstyles are interpreted to be broadly contemporaneous along thelength of the northern margin of the Inland Branch. In the westheat transfer was dominated by conduction and externally drivenby granites, whereas in the east heat transfer was dominatedby advection and internally driven radiogenic heat production.The ultimate cause was along-orogen variation in crustal architecture,including thickness of the passive margin lithosphere and thicknessof the overlying sedimentary succession. KEY WORDS: Pan-African Orogeny; PT paths; pseudosections; low-P metamorphism; contact metamorphism; Barrovian metamorphism  相似文献   

13.
The bronzite—chromite-anorthite assemblage of the F—unit(Cameron & Emerson, 1959) from the Critical Zone of theBushveld Igneous Complex, was examined with the aid of an electrolyticcell designed after Sato (1971). The resultant fO2-T data reveala last equilibration at an fO2 value of 1011·82 ±·40 atm and at a temperature of 1091 ± 35 °C.These fO2-T data when compared with: (1) a one atmosphere quenching—technique solidus determinationof 1110 ± 5 °C, (2) the Bushveld plagioclase compositional trends (Cameron,1970), (3) Bushveld petrofabric examinations (Cameron, 1969) (4) phase equilibria in the system CaO–MgO–FeO–CaAl2Si2O8–SiO2(Roeder & Osborn, 1966), (5) phase equilibria in the system CaAl2Si2O8–NaAlSi3O8–SiO2–MgO–Fe–O2–H2O–CO2(Eggler, 1974), all support the idea that the Eastern Bushveld magma was notappreciably differentiating in the middle Critical Zone betweenF and the L Horizons, an accumulation of nearly 220 meters.  相似文献   

14.
Zoned garnet and amphibole occur in metabasites of the KraubathMassif, Eastern Alps, that contain relic magmatic clinopyroxene.The amphibole composition gradually changes from core (XMg =0·83) to rim (XMg = 0·6–0·7). A numberof compositional varieties of garnet occur in the metabasite.An older porphyroblastic garnet (Py23–27, Alm41–43,Grs29–33) has two different compositional domains, onerelatively rich in Mg (Py27–30) and the other rich inCa (Grs35–38) with a low Mg (Py20–25) content. Theyoungest variety, which forms rims on, or microveins in, theporphyroblastic garnet, has high Ca and low Mg (Grs40–57,Py2–7, Alm46–51). The amphibole cores and garnetporphyroblasts are interpreted to represent minerals formedduring Variscan regional metamorphism under amphibolite-faciesconditions. Alpine metamorphism is represented by the most recentCa-rich and Mg-poor variety of garnet that coexists with theamphibole rims, epidote and chlorite. Fracturing in the porphyroblasticgarnet probably originated during retrogression of the Variscanamphibolite-facies assemblages. Textural relations suggest thatthe garnet in the microveins formed by dehydration of hydrousphases during an Alpine metamorphic overprint that reached PTconditions of 550–583°C at 1·0 GPa. KEY WORDS: microveins; garnet; metabasites; Kraubath Massif; Eastern Alps  相似文献   

15.
The role of clinopyroxene in producing grandite garnet is evaluatedusing data from an ultrahigh-temperature metamorphosed calc-silicategranulite occurrence in the Eastern Ghats Belt, India. ‘Peak’pressure–temperature conditions of metamorphism were previouslyconstrained from associated high Mg–Al granulites as c.0·9 GPa, >950°C, and the rocks were near-isobaricallycooled to c. 750°C. Grandite garnet of variable compositionwas produced by a number of reactions involving phases suchas clinopyroxene, scapolite, plagioclase, wollastonite and calcite,in closely spaced domains. Compositional heterogeneity is preservedeven on a microscale. This precludes pervasive fluid fluxingduring either the peak or the retrograde stage of metamorphism,and is further corroborated by computation of fluid–rockratios. With the help of detailed textural and mineral compositionalstudies leading to formulation of balanced reactions, and usingan internally consistent thermodynamic dataset and relevantactivity–composition relationships, new petrogenetic gridsare developed involving clinopyroxene in the system CaO–Al2O3–FeO–SiO2–CO2–O2in TaCO2fO2 space to demonstrate the importanceof these factors in the formation of grandite garnet. Two singularcompositions in garnet-producing reactions in this system arededuced, which explain apparently anomalous textural relations.The possible role of an esseneite component in clinopyroxenein the production of grandite garnet is evaluated. It is concludedthat temperature and fO2 are the most crucial variables controllinggarnet composition in calc-silicate granulites. fO2, however,behaves as a dependent variable of CO2 in the fluid phase. Externalfluid fluxing of any composition is not necessary to producechemical heterogeneity of garnet solid solution. KEY WORDS: grandite garnet; role of clinopyroxene; internal buffering; oxidation–decarbonation equilibria  相似文献   

16.
High-pressure–high-temperature experiments were performedin the range 7–15 GPa and 1300–1600°C to investigatethe stability and phase relations of the K- and Ba-dominantmembers of the crichtonite and magnetoplumbite series of phasesin simplified bulk compositions in the systems TiO2–ZrO2–Cr2O3–Fe2O3–BaO–K2Oand TiO2–Cr2O3–Fe2O3–BaO–K2O. Both seriesof phases occur as inclusions in diamond and/or as constituentsof metasomatized peridotite mantle xenoliths sampled by kimberlitesor alkaline lamprophyres. They can accommodate large ion lithophileelements (LILE) and high field strength elements (HFSE) on awt % level and, hence, can critically influence the LILE andHFSE budget of a metasomatized peridotite even if present onlyin trace amounts. The Ba and K end-members of the crichtoniteseries, lindsleyite and mathiasite, are stable to 11 GPa and1500–1600°C. Between 11 and 12 GPa, lindsleyite breaksdown to form two Ba–Cr-titanates of unknown structurethat persist to at least 13 GPa. The high-pressure breakdownproduct of mathiasite is a K–Cr-titanate with an idealizedformula KM7O12, where M = Ti, Cr, Mg, Fe. This phase possessesspace group P63/m with a = 9·175(2) Å, c = 2·879(1)Å, V = 209·9(1) Å3. Towards high temperatures,lindsleyite persists to 1600°C, whereas mathiasite breaksdown between 1500 and 1600°C to form a number of complexTi–Cr-oxides. Ba and K end-members of the magnetoplumbiteseries, hawthorneite and yimengite, are stable in runs at 7,10 and 15 GPa between 1300 and 1400°C coexisting with anumber of Ti–Cr-oxides. Molar mixtures (1:1) of lindsleyite–mathiasiteand hawthorneite–yimengite were studied at 7–10GPa and 1300–1400°C, and 9–15 GPa and 1150–1400°C,respectively. In the system lindsleyite–mathiasite, onehomogeneous Ba–K phase is stable, which shows a systematicincrease in the K/(K + Ba) ratio with increasing pressure. Inthe system hawthorneite–yimengite, two coexisting Ba–Kphases appear, which are Ba rich and Ba poor, respectively.The data obtained from this study suggest that Ba- and K-dominantmembers of the crichtonite and magnetoplumbite series of phasesare potentially stable not only throughout the entire subcontinentallithosphere but also under conditions of an average present-daymantle adiabat in the underlying asthenosphere to a depth ofup to 450 km. At still higher pressures, both K and Ba may remainstored in alkali titanates that would also be eminently suitablefor the transport of other ions with large ionic radii. KEY WORDS: crichtonite; magnetoplumbite; high-PT experiments; phase relations; upper mantle  相似文献   

17.
Kistufell: Primitive Melt from the Iceland Mantle Plume   总被引:5,自引:2,他引:5  
This paper presents new geochemical data from Kistufell (64°48'N,17°13'W), a monogenetic table mountain situated directlyabove the inferred locus of the Iceland mantle plume. Kistufellis composed of the most primitive olivine tholeiitic glassesfound in central Iceland (MgO 10·56 wt %, olivine Fo89·7).The glasses are interpreted as near-primary, high-degree plumemelts derived from a heterogeneous mantle source. Mineral, glassand bulk-rock (glass + minerals) chemistry indicates a low averagemelting pressure (15 kbar), high initial crystallization pressuresand temperatures (10–15 kbar and 1270°C), and eruptiontemperatures (1240°C) that are among the highest observedin Iceland. The glasses have trace element signatures (Lan/Ybn<1, Ban/Zrn 0·55–0·58) indicative ofa trace element depleted source, and the Sr–Nd–Pbisotopic ratios (87Sr/86Sr 0·70304–0·70308,143Nd/144Nd 0·513058–0·513099, 206Pb/204Pb18·343–18·361) further suggest a long-termtrace element depletion relative to primordial mantle. HighHe isotopic ratios (15·3–16·8 R/Ra) combinedwith low 207Pb/204Pb (15·42–15·43) suggestthat the mantle source of the magma is different from that ofNorth Atlantic mid-ocean ridge basalt. Negative Pb anomalies,and positive Nb and Ta anomalies indicate that the source includesa recycled, subducted oceanic crustal or mantle component. PositiveSr anomalies (Srn/Ndn = 1·39–1·50) furthersuggest that this recycled source component involves lower oceaniccrustal gabbros. The  相似文献   

18.
Fe–Mg exchange is the most important solid solution involvedin partial melting of spinel lherzolite, and the system CaO–MgO–Al2O3–SiO2–FeO(CMASF) is ideally suited to explore this type of exchange duringmantle melting. Also, if primary mid-ocean ridge basalts arelargely generated in the spinel lherzolite stability field bynear-fractional fusion, then Na and other highly incompatibleelements will early on become depleted in the source, and themelting behaviour of mantle lherzolite should resemble the meltingbehaviour of simplified lherzolite in the CMASF system. We havedetermined the isobarically univariant melting relations ofthe lherzolite phase assemblage in the CMASF system in the 0·7–2·8GPa pressure range. Isobarically, for every 1 wt % increasein the FeO content of the melt in equilibrium with the lherzolitephase assemblage, the equilibrium temperature is lower by about3–5°C. Relative to the solidus of model lherzolitein the CaO–MgO–Al2O3–SiO2 system, melt compositionsin the CMASF system are displaced slightly towards the alkalicside of the basalt tetrahedron. The transition on the solidusfrom spinel to plagioclase lherzolite has a positive Clapeyronslope with the spinel lherzolite assemblage on the high-temperatureside, and has an almost identical position in P–T spaceto the comparable transition in the CaO–MgO–Al2O3–SiO2–Na2O(CMASN) system. When the compositions of all phases are describedmathematically and used to model the generation of primary basalts,temperature and melt composition changes are small as percentmelting increases. More specifically, 10% melting takes placeover 1·5–2°C, melt compositions are relativelyinsensitive to the degree of melting and bulk composition, andequilibrium and near-fractional melting yield similar melt compositions.FeO and MgO are the oxides that exhibit the greatest changein the melt with degree of melting and bulk composition. Theamount of FeO decreases with increasing degree of melting, whereasthe amount of MgO increases. The coefficients for Fe–Mgexchange between the coexisting crystalline phases and melt,KdFe–Mgxl–liq, show a relatively simple and predictablebehaviour with pressure and temperature: the coefficients forolivine and spinel do not show significant dependence on temperature,whereas the coefficients for orthopyroxene and clinopyroxeneincrease with pressure and temperature. When melting of lherzoliteis modeled in the CMASF system, a strong linear correlationis observed between the mg-number of the lherzolite and themg-number of the near-solidus melts. Comparison with meltingin the CMASN system indicates that Na2O has a strong effecton lherzolite melting behaviour only at small degrees of melting. KEY WORDS: CMASF; lherzolite solidus; mantle melting  相似文献   

19.
Experiments defining the distribution of H2O [Dw = wt % H2O(melt)/wt% H2O(crd)]) between granitic melt and coexisting cordieriteover a range of melt H2O contents from saturated (i.e. coexistingcordierite + melt + vapour) to highly undersaturated (cordierite+ melt) have been conducted at 3–7 kbar and 800–1000°C.H2O contents in cordierites and granitic melts were determinedusing secondary ion mass spectrometry (SIMS). For H2O vapour-saturatedconditions Dw ranges from 4·3 to 7 and increases withrising temperature. When the system is volatile undersaturatedDw decreases to minimum values of 2·6–5·0at moderate to low cordierite H2O contents (0·6–1·1wt %). At very low aH2O, cordierite contains less than 0·2–0·3wt % H2O and Dw increases sharply. The Dw results are consistentwith melt H2O solubility models in which aH2O is proportionalto Xw2 (where Xw is the mole fraction of H2O in eight-oxygenunit melt) at Xw  相似文献   

20.
Garnet-bearing assemblages of K-rich and K-poor metapelitesfrom the Ilesha Schist belt, SW Nigeria, are investigated. K-richsamples contain the assemblages (A) garnet–staurolite–muscovite–chlorite–magnetite,(B) andalusite–garnet–staurolite–muscovite–chlorite–magnetiteand (C) sillimanite–andalusite–garnet–muscovite–chlorite–magnetite.K-poor samples contain the assemblages (D) garnet–staurolite–cordierite–chloriteand (E) garnet–cordierite–chlorite ± staurolite.All assemblages contain quartz, plagioclase, biotite and ilmenite.PT pseudosections calculated in the system CaO–Na2O–K2O–TiO2–MnO–FeO–MgO–Al2O3–SiO2 –H2O ± O2 suggest peak metamorphismat 590 ± 20°C at 5 ± 0·5 kbar, followedby retrogression to 550°C at 3·0 kbar, in agreementwith field evidence, domain assemblages, mineral compositions,modes and geothermobarometry. The absence of compositional zonationshows that garnet in all investigated rocks nucleated and grewat constant P–T–X in equilibrium with associatedminerals on the thin-section scale. However, the garnet-in reactiondid not begin until the establishment of a significant temperatureoverstep of  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号