首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary South Asian summer monsoon precipitation and its variability are examined from the outputs of the coupled climate models assessed as part of the Intergovernmental Panel on Climate Change Fourth Assessment. Out of the 22 models examined, 19 are able to capture the maximum rainfall during the summer monsoon period (June through September) with varying amplitude. While two models are unable to reproduce the annual cycle well, one model is unable to simulate the summer monsoon season. The simulated inter-annual variability from the 19 models is examined with respect to the mean precipitation, coefficient of variation, long-term trends and the biennial tendency. The model simulated mean precipitation varies from 500 mm to 900 mm and coefficient of variation from 3 to 13%. While seven models exhibit long-term trends, eight are able to simulate the biennial nature of the monsoon rainfall. Six models, which generate the most realistic 20th century monsoon climate over south Asia, are selected to examine future projections under the doubling CO2 scenario. Projections reveal a significant increase in mean monsoon precipitation of 8% and a possible extension of the monsoon period based on the multi-model ensemble technique. Extreme excess and deficient monsoons are projected to intensify. The projected increase in precipitation could be attributed to the projected intensification of the heat low over northwest India, the trough of low pressure over the Indo-Gangetic plains, and the land–ocean pressure gradient during the establishment phase of the monsoon. The intensification of these pressure systems could be attributed to the decline in winter/spring snowfall. Furthermore, a decrease of winter snowfall over western Eurasia is also projected along with an increase of winter snowfall over Siberia/eastern Eurasia. This projected dipole snow configuration during winter could imply changes in mid-latitude circulation conducive to subsequent summer monsoon precipitation activity. An increase in precipitable water of 12–16% is projected over major parts of India. A maximum increase of about 20–24% is found over the Arabian Peninsula, adjoining regions of Pakistan, northwest India and Nepal. Although the projected summer monsoon circulation appears to weaken, the projected anomalous flow over the Bay of Bengal (Arabian Sea) will support oceanic moisture convergence towards the southern parts of India and Sri Lanka (northwest India and adjoining regions). The ENSO-Monsoon relationship is also projected to weaken.  相似文献   

2.
Indian Summer Monsoon Rainfall(ISMR)exhibits a prominent inter-annual variability known as troposphere biennial oscillation.A season of deficient June to September monsoon rainfall in India is followed by warm sea surface temperature(SST)anomalies over the tropical Indian Ocean and cold SST anomalies over the western Pacific Ocean.These anomalies persist until the following monsoon,which yields normal or excessive rainfall.Monsoon rainfall in India has shown decadal variability in the form of 30 year epochs of alternately occurring frequent and infrequent drought monsoons since1841,when rainfall measurements began in India.Decadal oscillations of monsoon rainfall and the well known decadal oscillations in SSTs of the Atlantic and Pacific oceans have the same period of approximately 60 years and nearly the same temporal phase.In both of these variabilities,anomalies in monsoon heat source,such as deep convection,and middle latitude westerlies of the upper troposphere over south Asia have prominent roles.  相似文献   

3.
1958~2005年中国高空大气比湿变化   总被引:2,自引:0,他引:2  
利用经过质量控制和均一化的92站探空露点温度序列,研究了中国高空大气比湿气候学特征和1958~2005年比湿时间、空间演变以及不同时段线性变化趋势地区和季节差异。中国比湿气候场特征显示,垂直方向上90%以上的水汽集中在对流层中低层,空间呈南高北低的纬向分布。通过累积距平、滑动平均和突变点分析等方法研究了中国平均高空比湿的年代际变化,得到1958~2005年中国对流层中低层大气比湿经历“湿”、“干”、“湿”阶段性变化。不同时段线性变化趋势分析表明,1958~2005年对流层低层比湿呈上升趋势,对流层中层、高层和平流层下层为下降趋势;1979~2005年对流层低层上升趋势和对流层高层下降趋势均较整个时段明显增强。近50年来中国高空各层温度与比湿变化基本同步,统计达到显著相关,说明温度是影响比湿变化的重要因子。趋势的空间分布显示对流层下层全国大部比湿为上升趋势,且1979以来上升趋势更加明显,对流层中层趋势呈北升南降分布,对流层高层多为下降趋势。中国五个分区中西北地区对流层低层比湿上升趋势最明显,长江和华南地区升幅较小。1958~2005年对流层下层各季节比湿变化趋势差异较明显,上升趋势发生在夏、冬两季,1979~2005年四季比湿均呈上升趋势,其中夏季上升趋势最为明显。  相似文献   

4.
Dissimilarities in temperature trends in space and time over the Indian region have been examined to look for signatures of aerosols’ influence. Separate temperature time series for North and South India were constructed for dry (November–May) and wet (June–October) seasons. Temperature trend for the entire period 1901–2007 and different subperiods of 1901–1950, 1951–1990, 1971–2007, and 1991–2007 have been examined to isolate the aerosol and other greenhouse gas influences on temperatures. Maximum (daytime) temperatures during dry season corresponding to North and South India show significant warming trend of 0.8 and 1.0?°C per hundred years during the period 1901–2007, while minimum temperature shows nebulous trend of 0.2 and 0.3?°C per hundred years over North and South India, respectively. During the wet season, maximum temperature shows nearly half of dry season maximum temperature warming trend. However, asymmetry is observed in dry season maximum temperature trend during post-industrial period 1951–1990 wherein the North/South India shows decreasing/increasing trends, while during the recent period 1991–2007 trends are uniformly positive for both the regions. Spatial and temporal asymmetry in observed trends clearly point to the role of aerosols in lowering temperature trends over northern India. Atmospheric aerosols could cause a negative climate forcing that can modulate the regional surface temperature trends in a significant way. As this forcing acts differentially on day and night temperatures, trends in diurnal temperature range (DTR) provide a direct assessment of impacts of aerosols on temperature trends. Time series of diurnal temperature range for dry and wet seasons have been examined separately for North and South India. Over North India, the DTR for dry season has increased gradually during the period 1901–1970 and thereafter showed decreasing trend, while trends in temperature range over Southern India were almost opposite in phase with North India. The aerosol and greenhouse gases seem to play an important role in the spatial and temporal variability of temperature range over India.  相似文献   

5.
利用喜马拉雅山脉中段南、北两侧6个气象站1971-2007年逐月气温、降水资料,分析了该地区气候变化趋势、异常及突变特征。结果表明:喜马拉雅山脉中段南、北两侧年、季平均气温均呈明显上升趋势,冬半年升温幅度大于夏半年。年及夏半年平均气温均为随年代升高趋势,而冬半年气温在20世纪80年代较70年代略偏低,90年代后又逐渐升高。21世纪前7 a升温最为显著,较20世纪70年代升高0.6~1.1℃。1997年该地区南侧年平均气温发生突变,突变后增温趋势更加明显。20世纪90年代末以来,异常偏暖年份出现的几率明显增加,且南侧多于北侧。喜马拉雅山脉中段北侧年及冬夏半年降水均呈增多趋势。南侧年和夏半年降水呈减少趋势,冬半年为增多趋势。降水异常出现在20世纪80、90年代,21世纪后降水出现异常的概率明显减少。近40 a,北侧气候具有暖湿化趋势;南侧冬半年与之类似,但夏半年及全年呈暖干化趋势。  相似文献   

6.
利用1983~2011年降水量、环流和海温的再分析资料,探讨了东亚北部地区夏季水汽输送的年代际变化特征,并分析了前冬北大西洋海温对东亚北部地区夏季水汽输送与大气环流的可能影响。研究结果表明,20世纪90年代末期东亚北部地区夏季整层水汽与降水年代际的变化特征相一致,整层水汽通量的年代际变化主要是由于纬向水汽输送异常作用的结果。东亚北部地区(35°~55°N,90°~145°E)西边界的水汽输送通量由多变少,东边界的水汽输送通量由少变多特征则直接导致了该地区降水由偏多转为偏少的年代际变化。就外强迫海温角度来说,前冬北大西洋海温跟东亚北部地区夏季500 hPa高度场、850 hPa风场和850 hPa比湿均显著相关。同时,在20世纪90年代中后期前冬北大西洋海温也表现出由偏低向偏高转变的年代际变化特征,且由于海温自身的记忆性前冬的海温异常一直延续到夏季。并在夏季激发出横跨北大西洋和欧亚大陆中高纬度地区的大西洋-欧亚(AEA)遥相关结构,并进一步影响东亚北部地区夏季水汽输送。  相似文献   

7.
中国东部地区冬夏季相对湿度变化特征   总被引:3,自引:0,他引:3  
利用中国东部315个台站近50a(1963-2012年)月平均地面相对湿度和降水量资料,对中国东部地区冬夏季相对湿度的变化特征进行了分析和比较,并讨论了相对湿度与降水的空间耦合关系。结果表明:1)冬季相对湿度的低值区集中在黄淮北部、华北和东北南部,高值区出现在35°N以南地区和东北北部,呈现出中部小、南北大的空间分布特征;夏季相对湿度较冬季明显增大,低值区主要集中在内蒙古中东部,表现出从东部沿海向内陆地区递减的特征。2)冬夏季相对湿度的高(低)值区,其相对变率偏小(大),即湿润(干旱)区的相对湿度较为(不)稳定。3)近50a来,东部大部分地区冬夏季相对湿度普遍表现为下降趋势,其中冬季东北北部及夏季东南部沿海、内蒙古中东部及东北西部相对湿度的下降趋势最为显著。4)东部地区冬夏季相对湿度与同期降水存在很好的同位相对应关系:相对湿度高(低)湿区对应多(少)雨区。其中冬季显著耦合区位于40°N以南地区;夏季相对湿度与降水的关系较冬季复杂,显著耦合区首先位于35°N以北地区,其次位于35°N以南地区,但江淮和华南存在反向的空间变化。  相似文献   

8.
Bin Yu  Hai Lin 《Climate Dynamics》2013,40(5-6):1183-1200
The secular trends and interannual variability of wintertime temperatures over northern extratropical lands and circulations over the northern hemisphere are examined using the NCEP/NCAR reanalysis from 1961 to 2010. A primitive equation dry atmospheric model, driven by time-averaged forcing in each winter diagnosed from the NCEP reanalysis, is then employed to investigate the influences of tropical and extratropical forcing on the temperature and circulation variability. The model has no topography and the forcing is thus model specific. The dynamic and thermodynamic maintenances of the circulation and temperature anomalies are also diagnosed. Distinct surface temperature trends over 1961–1990 and 1991–2010 are found over most of the extratropical lands. The trend is stronger in the last two decades than that before 1990, particularly over eastern Canadian Arctic, Greenland, and Asia. The exchange of midlatitude and polar air supports the temperature trends. Both the diagnosed extratropical and tropical forcings contribute to the temperature and circulation trends over 1961–1990, while the extratropical forcing dominates tropical forcing for the trends over 1991–2010. The contribution of the tropical forcing to the trends is sensitive to the period considered. The temperature and circulation responses to the diagnosed tropical and extratropical forcings are approximately additive and partially offsetting. Covariances between the interannual surface temperature and 500-hPa geopotential anomalies for the NCEP reanalysis from 1961 to 2010 are dominated by two leading modes associated with the North Atlantic Oscillation (NAO) and Pacific-North American (PNA) teleconnection patterns. The diagnosed extratropical forcing accounts for a significant part of the NAO and PNA associated variability, including the interannual variability of stationary wave anomalies, as well as dynamically and thermodynamically synoptic eddy feedbacks over the North Atlantic and North Pacific. The tropical forcing contributes to the PNA related temperature and circulation variability, but has a small contribution to the NAO associated variability. Additionally, relative contributions of tropical Indian and Pacific forcings are also assessed.  相似文献   

9.
福建近44年雾日趋势变化特征及可能影响因素   总被引:13,自引:1,他引:13       下载免费PDF全文
吴滨  施能  李玲 《应用气象学报》2007,18(4):497-505
应用1961—2004年福建省50个气象站逐月大雾及浓雾日数资料, 分析了全省大雾日数及浓雾日数的年、季分布特点、长期变化趋势、年代际变化特征以及可能的影响因素。结果表明:全省年、季雾日数分布均表现为中部及三明西部的多雾区, 沿海及南部地区的少雾区, 而多雾区中浓雾所占的比率达30%以上; 全省年、季大雾日数大部分地区表现为明显的减少趋势, 仅在龙岩西部呈增加趋势, 而浓雾的减少趋势不如大雾; 年、季雾日数具有明显的年代际变化特征, 年、季雾日数在20世纪80年代中期左右转为明显偏少期, 之前则为明显的偏多期。文中还重点分析了6个代表站大雾与浓雾的趋势与月际分布特征。进一步研究指出, 年雾日数与年平均气温有较好的负相关关系, 而与年平均相对湿度有很好的正相关关系, 同时与森林覆盖率的变化有一定关系。  相似文献   

10.
Temporal trends between 1951 and 2007 in annual Indian Summer Monsoon (ISM) precipitation, frequency of severe drought years and onset date of ISM were analysed on a 0.25°?×?0.25° grid cell basis across India using APHRODITE daily gridded precipitation data. Locations which experienced temporal trends of increasing or decreasing inter-annual variation in annual ISM precipitation and onset date of ISM were detected using the non-parametric Mann-Kendall test. A new method of defining local onset of ISM from daily precipitation data was developed to enable countrywide temporal trend analysis of onset date. India was characterised by a heterogeneous spatial distribution in the magnitude of inter-annual variation and location of significant temporal trends in the examined facets of ISM precipitation. A greater extent of the country experienced significant trends (p?<?0.05) of increasing inter-annual variation rather than simple increasing or decreasing trends in annual ISM precipitation and onset date of ISM. Field significance tests showed grid cells reporting significant trends were significant (p?<?0.05) at the global or field level (except trends of increasing, i.e. later, ISM onset date). This research provides finer spatial detail regarding trends and variation in annual ISM precipitation, severe drought years and onset date of ISM complementing recent studies on trends in extreme precipitation events over India to produce a comprehensive overview of recent behaviour of ISM precipitation. These findings will benefit water managers charged with managing water resources sustainably at a fine spatial scale (the watershed or basin level).  相似文献   

11.
Some evidence of climate change in twentieth-century India   总被引:1,自引:0,他引:1  
The study of climate changes in India and search for robust evidences are issues of concern specially when it is known that poor people are very vulnerable to climate changes. Due to the vast size of India and its complex geography, climate in this part of the globe has large spatial and temporal variations. Important weather events affecting India are floods and droughts, monsoon depressions and cyclones, heat waves, cold waves, prolonged fog and snowfall. Results of this comprehensive study based on observed data and model reanalyzed fields indicate that in the last century, the atmospheric surface temperature in India has enhanced by about 1 and 1.1°C during winter and post-monsoon months respectively. Also decrease in the minimum temperature during summer monsoon and its increase during post-monsoon months have created a large difference of about 0.8°C in the seasonal temperature anomalies which may bring about seasonal asymmetry and hence changes in atmospheric circulation. Opposite phases of increase and decrease in the minimum temperatures in the southern and northern regions of India respectively have been noticed in the interannual variability. In north India, the minimum temperature shows sharp decrease of its magnitude between 1955 and 1972 and then sharp increase till date. But in south India, the minimum temperature has a steady increase. The sea surface temperatures (SST) of Arabian Sea and Bay of Bengal also show increasing trend. Observations indicate occurrence of more extreme temperature events in the east coast of India in the recent past. During summer monsoon months, there is a decreasing (increasing) trend in the frequency of depressions (low pressure areas). In the last century the frequency of occurrence of cyclonic storms shows increasing trend in the month of November. In addition there is increase in the number of severe cyclonic storms crossing Indian Coast. Analysis of rainfall amount during different seasons indicate decreasing tendency in the summer monsoon rainfall over Indian landmass and increasing trend in the rainfall during pre-monsoon and post-monsoon months.  相似文献   

12.
为了研究本地区雾和霾的规律和趋势,利用梅州市气象局1990-2008年近20a的雾日和霾日统计资料,通过线性回归分析的方法从年、季和持续时间上分析了梅州城区的雾、霾气候特征.结果表明:1990-2008年期间梅州城区雾日数呈逐渐显著性减少的趋势,年雾日数减少幅度为0.4561d/a,霾日数从2005年之后开始呈明显增加趋势;雾在冬季最多,秋季和夏季最少,霾在冬季最多,夏季最少.另外,霾一年四季均有出现,且出现的几率不断增加,持续时间也不断增长.  相似文献   

13.
雾是一种严重的天气灾害,极大地影响了交通和日常生活,并可能带来巨大的经济损失。利用1958~2007年678个中国地面观测站点的雾日数资料,采用相关系数分析、合成分析等方法分析了冬季雾日数的时空特征,发现冬季多雾地区和年际变率较强地区集中在西南、华北和华南等地区。根据冬季雾日分布特征,将中国划分为3个较为独立的雾区,从水汽条件、大气稳定度及大气环流背景等方面讨论了区域气候条件差异对局地雾形成机制的影响,发现不同区域冬季雾日产生的气候条件有着明显的差异性。结论如下:西南区冬季雾的形成受水汽输送影响较小,受大气稳定度影响较大,且巴尔喀什湖东侧高压脊加强,冷空气南下,西南较易发生雾;华北冬季雾日的形成受水汽输送影响较大,伴随长江中下游水汽异常推进偏北,水汽异常大值中心偏北,且西伯利亚高压、东亚大槽以及东北低压减弱,冷空气活动较弱,华北较易发生雾。华南冬季雾日的形成受水汽输送影响较大,伴随长江中下游水汽异常推进偏弱,水汽异常大值中心偏南,且东亚大槽减弱,华南较易发生雾。  相似文献   

14.
近50年中国霾年代际特征及气象成因   总被引:6,自引:3,他引:3       下载免费PDF全文
根据1961-2013年全国745个国家基准站的长期观测资料,分析中国霾日数年代际变化特征及可能的气象成因。结果表明:近50年来,中国霾天气主要集中在东部从华南到华北的大部分地区,霾日数呈增加趋势。秋冬两季是霾天气发生最频繁、变化最明显的两个季节。中国东部淮河以南地区秋冬两季霾日数在2000年前呈增加趋势,其后增加趋势变得较为平缓,20世纪90年代前霾日数与近地面风速呈显著负相关关系,90年代后则与大气相对湿度呈显著负相关关系,随着90年代前近地面风速减小和90年代后大气相对湿度降低,该区域霾日数表现出明显的增加趋势。中国东部从淮河到华北大部分地区秋冬两季霾日数1980年后增加趋势变得不明显,这可能与该区域近地面风速和大气相对湿度的变化趋势较为平缓有关。  相似文献   

15.
南涝北旱的年代气候特点和形成条件   总被引:10,自引:3,他引:10       下载免费PDF全文
通过研究最近50年我国夏季降水分布的年代际及年际气候变化特征,以及对20世纪90年代至今夏季旱涝趋势的对比分析,讨论了夏季主要雨带位置南移的气候趋势,以及亚洲大陆高压、ENSO事件对夏季降水的影响关系。结果表明,20世纪90年代后期开始我国夏季旱涝分布气候态发生较大的变化,这可能预示夏季进入南涝北旱的年代气候时期。这些结果对于降水的年代气候预测和短期气候预测都具有重要意义。  相似文献   

16.
In this study, we have investigated the seasonality and long-term trends of major biomass burning (BB) sources over South and Southeast Asia (S-SE Asia). The activities of BB and related emissions show bi-modal seasonality in S-SE Asia. From January to May period, the BB dominates in the northern hemisphere parts of S-SE Asia. From July to September, the activities shift to the southern hemisphere where the emissions from Indonesian and Malaysian islands make largest contributions. Overall, the activities of BB are lowest during October–December period in S-SE Asia. The seasonality of BB intensity and rain are just opposite in the phase over India. The climatological (1997–2008) emissions of carbon monoxide (CO), oxides of nitrogen (NOx) and non-methane hydrocarbons (NMHCs) show strong spatio-temporal variation. The trends show large inter-annual variations with highest and lowest values during years 1997 and 2000, respectively. In the southern hemisphere parts of S-SE Asia mainly in Indonesia, the intensity of biomass fires has been modulated by the large scale climatic phenomena like El Niño and Southern Oscillation (ENSO). The annual emissions of trace gases in southern hemisphere region during the El Niño years exceed to those for the normal years. The estimates for northern hemisphere region during the La Niña years were significantly higher than those for the normal years. The Model for Ozone And Related Chemical Tracers (MOZART) simulations of columnar CO and NOx tend to capture the prominent features of BB emissions in S-SE Asia. The impacts of extensive fires in Indonesia during El Niño year of 2006 compared to a normal year of 2005 were clearly seen in the MOZART-4 simulations of both CO and NOx.  相似文献   

17.
利用2010—2016年江苏地区雨雾观测资料,对雨雾天气类型分型、气象要素变化以及成因机制等进行了分析。结果表明:江苏地区雨雾天气类型主要分为倒槽型、冷锋前部型、高压底部型,其中倒槽型发生频率最高;低气压、高湿度、低风速、风向由偏东风或东南风转为偏北风以及前期较高的气温等是雨雾形成的重要气象条件;雨雾形成时江苏地区925 hPa上正变温转为弱的负变温,说明弱冷空气促使了雨雾的发生;边界层低层的弱冷平流有利于水汽凝结和逆温形成,逆温最强时段对应能见度最低阶段;雨雾过程中边界层低层上升、下沉运动均可存在且垂直速度较小。  相似文献   

18.
This study examines the influence of the mid-latitude circulation on the surface heat low (HL) and associated monsoon rainfall over northwestern India and Pakistan using the ERA40 data and high resolution (T106L31) climate model ECHAM5 simulation. Special emphasis is given to the surface HL which forms over Pakistan and adjoining areas of India, Iran and Afghanistan during the summer season. A heat low index (HLI) is defined to depict the surface HL. The HLI displays significant correlations with the upper level mid-latitude circulation over western central Asia and low level monsoon circulation over Arabian Sea and acts as a bridge connecting the mid-latitude wave train to the Indian summer monsoon. A time-lagged singular value decomposition analysis reveals that the eastward propagation of the mid-latitude circumglobal wave train (CGT) influences the surface pressure anomalies over the Indian domain. The largest low (negative) pressure anomalies over the western parts of the HL region (i.e., Iran and Afghanistan) occur in conjunction with the upper level anomalous high that develops over western-central Asia during the positive phase of the CGT. The composite analysis also reveals a significant increase in the low pressure anomalies over Iran and Afghanistan during the positive phase of CGT. The westward increasing low pressure anomalies with its north?Csouth orientation provokes enormous north?Csouth pressure gradient (lower pressure over land than over sea). This in turn enables the moist southerly flow from the Arabian Sea to penetrate farther northward over northwestern India and Pakistan. A monsoon trough like conditions develops over northwestern India and Pakistan where the moist southwesterly flow from the Arabian Sea and the Persian Gulf converge. The convergence in association with the orographic uplifting expedites convection and associated precipitation over northwestern India and Pakistan. The high resolution climate model ECHAM5 simulation also underlines the proposed findings and mechanism.  相似文献   

19.
This study investigates the trends in the mean state and the day-to-day variability(DDV) of the surface weather conditions over northern and northeastern China(NNEC) during 1961–2014 using CN05.1 observational data. In this study, we show that the surface temperature(wind speed) has increased(decreased) over NNEC and that the DDV of the surface temperatures and wind speeds has decreased, indicating a trend towards a stable warm and windless state of the surface weather conditions over NNEC. This finding implies a trend towards more persistent hot and windless episodes, which threaten human health and aggravate environmental problems. The trends are also examined in reanalysis data. Both the ERA-40 and the NCEP data show an increasing(decreasing) trend in the mean state of the surface temperatures(wind speeds). However, the reanalysis data show a consistent decreasing trend in the DDV of the surface weather conditions only in the spring. The underlying reason for the decreased DDV of the surface weather conditions is further analyzed, focusing on the spring season. Essentially,the decreased DDV of the surface weather conditions can be attributed to a decrease in synoptic-scale wave activity, which is caused by a decrease in the baroclinic instability. There is a contrasting change in the baroclinic instability over East Asia, showing a decreasing(increasing) trend north(south) of 40°N. This contrasting change in the baroclinic instability is primarily caused by a tropospheric cooling zone over East Asia at approximately 40°N, which influences the meridional temperature gradient over East Asia.  相似文献   

20.
江苏省近45a极端气候的变化特征   总被引:13,自引:8,他引:5  
利用江苏省35个测站1960—2004年45 a的逐日最高温度、最低温度、日降水量资料集,分析了近45 a江苏省极端高温、极端低温以及极端降水的基本变化特征。结果表明:(1)多年平均年极端高温的空间分布表现为西高东低,而极端低温则表现为自北向南的显著增加,极端降水的发生频次自南向北逐渐减少;(2)极端高温在江苏中部以及南部大部分地区有上升趋势,而西北地区则有弱的下降趋势;全省极端低温表现为显著的升高趋势;极端降水频次在南部地区有增加的趋势,北部减少趋势,中部则无变化趋势。(3)江苏极端高温、低温和极端降水的年际和年代际变化具有区域性差异,其中极端降水频次变化的区域性差异最为明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号