首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of 4‐chloro‐3‐nitroaniline, C6H5ClN2O2, (I), and 4‐iodo‐3‐nitroaniline, C6H5IN2O2, (II), are isomorphs and both undergo continuous (second order) phase transitions at 237 and 200 K, respectively. The structures, as well as their phase transitions, have been studied by single‐crystal X‐ray diffraction, Raman spectroscopy and difference scanning calorimetry experiments. Both high‐temperature phases (293 K) show disorder of the nitro substituents, which are inclined towards the benzene‐ring planes at two different orientations. In the low‐temperature phases (120 K), both inclination angles are well maintained, while the disorder is removed. Concomitantly, the b axis doubles with respect to the room‐temperature cell. Each of the low‐temperature phases of (I) and (II) contains two pairs of independent molecules, where the molecules in each pair are related by noncrystallographic inversion centres. The molecules within each pair have the same absolute value of the inclination angle. The Flack parameter of the low‐temperature phases is very close to 0.5, indicating inversion twinning. This can be envisaged as stacking faults in the low‐temperature phases. It seems that competition between the primary amine–nitro N—H...O hydrogen bonds which form three‐centred hydrogen bonds is the reason for the disorder of the nitro groups, as well as for the phase transition in both (I) and (II). The backbones of the structures are formed by N—H...N hydrogen bonding of moderate strength which results in the graph‐set motif C(3). This graph‐set motif forms a zigzag chain parallel to the monoclinic b axis and is maintained in both the high‐ and the low‐temperature structures. The primary amine groups are pyramidal, with similar geometric values in all four determinations. The high‐temperature phase of (II) has been described previously [Garden et al. (2004). Acta Cryst. C 60 , o328–o330].  相似文献   

2.
The title salt, C6H6NO2+·ClO4·C6H5NO2, was crystallized from an aqueous solution of equimolar quantities of perchloric acid and pyridine‐2‐carboxylic acid. Differential scanning calorimetry (DSC) measurements show that the compound undergoes a reversible phase transition at about 261.7 K, with a wide heat hysteresis of 21.9 K. The lower‐temperature polymorph (denoted LT; T = 223 K) crystallizes in the space group C2/c, while the higher‐temperature polymorph (denoted RT; T = 296 K) crystallizes in the space group P2/c. The relationship between these two phases can be described as: 2aRT = aLT; 2bRT = bLT; cRT = cLT. The crystal structure contains an infinite zigzag hydrogen‐bonded chain network of 2‐carboxypyridinium cations. The most distinct difference between the higher (RT) and lower (LT) temperature phases is the change in dihedral angle between the planes of the carboxylic acid group and the pyridinium ring, which leads to the formation of different ten‐membered hydrogen‐bonded rings. In the RT phase, both the perchlorate anions and the hydrogen‐bonded H atom within the carboxylic acid group are disordered. The disordered H atom is located on a twofold rotation axis. In the LT phase, the asymmetric unit is composed of two 2‐carboxypyridinium cations, half an ordered perchlorate anion with ideal tetrahedral geometry and a disordered perchlorate anion. The phase transition is attributable to the order–disorder transition of half of the perchlorate anions.  相似文献   

3.
As a function of temperature, the hexamethylenetetramine–2‐methylbenzoic acid (1/2) cocrystal, C6H12N4·2C8H8O2, undergoes a reversible structural phase transition. The orthorhombic high‐temperature phase in the space group Pccn has been studied in the temperature range between 165 and 300 K. At 164 K, a t2 phase transition to the monoclinic subgroup P21/c space group occurs; the resulting twinned low‐temperature phase was investigated in the temperature range between 164 and 100 K. The domains in the pseudomerohedral twin are related by a twofold rotation corresponding to the matrix (100/00/00). Systematic absence violations represent a sensitive criterium for the decision about the correct space‐group assignment at each temperature. The fractional volume contributions of the minor twin domain in the low‐temperature phase increases in the order 0.259 (2) → 0.318 (2) → 0.336 (2) → 0.341 (3) as the temperature increases in the order 150 → 160 → 163 → 164 K. The transformation occurs between the nonpolar point group mmm and the nonpolar point group 2/m, and corresponds to a ferroelastic transition or to a t2 structural phase transition. The asymmetric unit of the low‐temperature phase consists of two hexamethylenetetramine molecules and four molecules of 2‐methylbenzoic acid; it is smaller by a factor of 2 in the high‐temperature phase and contains two half molecules of hexamethylenetetramine, which sit across twofold axes, and two molecules of the organic acid. In both phases, the hexamethylenetetramine residue and two benzoic acid molecules form a three‐molecule aggregate; the low‐temperature phase contains two of these aggregates in general positions, whereas they are situated on a crystallographic twofold axis in the high‐temperature phase. In both phases, one of these three‐molecule aggregates is disordered. For this disordered unit, the ratio between the major and minor conformer increases upon cooling from 0.567 (7):0.433 (7) at 170 K via 0.674 (6):0.326 (6) and 0.808 (5):0.192 (5) at 160 K to 0.803 (6):0.197 (6) and 0.900 (4):0.100 (4) at 150 K, indicating temperature‐dependent dynamic molecular disorder. Even upon further cooling to 100 K, the disorder is retained in principle, albeit with very low site occupancies for the minor conformer.  相似文献   

4.
Four crystal structure determinations of 2,2,3,3,4,4‐hexafluoropentane‐1,5‐diol (HFPD), C5H6F6O2, were conducted on a single specimen by varying the temperature. Two polymorphs of HFPD were found to be enantiotropically related as phases (I) and (II), both in the space group P1. These structures contain closely related R44(20) sheets. A structure determination was completed on form (Ia) at 283 K. Form (Ia) was then supercooled below the phase transition temperature at 279 to 173 K to give form (Ib) for a second structure determination. Metastable form (Ib) was transformed by momentary warming and recooling to give form (II) for a third structure determination at 173 K. Form (II) transformed to form (Ic) upon warming to 283 K. Enantiotropic phase transitions between phases (I) and (II) were confirmed with X‐ray powder diffraction and differential scanning calorimetry. Form (Ia) was found as a twin by nonmerohedry by a reflection in (011). This twinning persists in all phases described. Additional twinning was found after the phase (I) to phase (II) transformation. These two additional twin components are related to the first pair by a 180° rotation about the (012) plane. This latter pair of twins persisted as the specimen was warmed back to form (Ic) at 283 K.  相似文献   

5.
Crystals of 9‐methyl­fluoren‐9‐ol, C14H12O, undergo a reversible phase transition at 176 (2) K. The structure of the high‐temperature α form at 200 K is compared with that of the low‐temperature β form at 100 K. Both polymorphs crystallize in space group P with Z = 4 and contain discrete hydrogen‐bonded R(8) ring tetramers arranged around crystallographic inversion centres. The most obvious changes observed on cooling the crystals to below 176 K are an abrupt increase of ca 0.5 Å in the shortest lattice translation, and a thermal transition with ΔH = 1 kJ mol?1.  相似文献   

6.
A newly synthesized one‐dimensional (1D) hydrogen‐bonded (H‐bonded) rhodium(II)–η5‐semiquinone complex, [Cp*Rh(η5p‐HSQ‐Me4)]PF6 ([ 1 ]PF6; Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl; HSQ=semiquinone) exhibits a paraelectric–antiferroelectric second‐order phase transition at 237.1 K. Neutron and X‐ray crystal structure analyses reveal that the H‐bonded proton is disordered over two sites in the room‐temperature (RT) phase. The phase transition would arise from this proton disorder together with rotation or libration of the Cp* ring and PF6? ion. The relative permittivity εb′ along the H‐bonded chains reaches relatively high values (ca., 130) in the RT phase. The temperature dependence of 13C CP/MAS NMR spectra demonstrates that the proton is dynamically disordered in the RT phase and that the proton exchange has already occurred in the low‐temperature (LT) phase. Rate constants for the proton exchange are estimated to be 10?4–10?6 s in the temperature range of 240–270 K. DFT calculations predict that the protonation/deprotonation of [ 1 ]+ leads to interesting hapticity changes of the semiquinone ligand accompanied by reduction/oxidation by the π‐bonded rhodium fragment, producing the stable η6‐hydroquinone complex, [Cp*Rh3+6p‐H2Q‐Me4)]2+ ([ 2 ]2+), and η4‐benzoquinone complex, [Cp*Rh+4p‐BQ‐Me4)] ([ 3 ]), respectively. Possible mechanisms leading to the dielectric response are discussed on the basis of the migration of the protonic solitons comprising of [ 2 ]2+ and [ 3 ], which would be generated in the H‐bonded chain.  相似文献   

7.
The reaction of 4‐(1,2,4‐triazol‐4‐yl)ethanesulfonate ( L ) with Zn2+, Cu2+, Ni2+, Co2+, and Fe2+ gave a series of analogous neutral trinuclear complexes with the formula [M3(μ‐ L )6(H2O)6] ( 1 – 5 ). These compounds were characterized by single‐crystal X‐ray diffraction, thermogravimetry, and elemental analysis. The magnetic properties of compounds 2 – 5 were studied. Complexes 2 – 4 show weak antiferromagnetic superexchange, with J values of ?0.33 ( 2 ), ?9.56 ( 3 ), and ?4.50 cm?1 ( 4 ) (exchange Hamiltonian H=?2 J (S1S2+S2S3)). Compound 5 shows two additional crystallographic phases ( 5 b and 5 c ) that can be obtained by dehydration and/or thermal treatment. These three phases exhibit distinct magnetic behavior. The Fe2+ centers in 5 are in high‐spin (HS) configuration at room temperature, with the central one exhibiting a non‐cooperative gradual spin transition below 250 K with T1/2=150 K. In 5 b , the central Fe2+ stays in its low‐spin (LS) state at room temperature, and cooperative spin transition occurs at higher temperatures and with the appearance of memory effect (T1/2↑=357 K and T1/2↓=343 K). In the case of 5 c , all iron centers remain in their HS configuration down to very low temperatures, with weak antiferromagnetic coupling (J=?1.16 cm?1). Compound 5 b exhibits spin transition with memory effect at the highest temperature reported, which matches the remarkable features of coordination polymers.  相似文献   

8.
The crystal structures of two solid phases of the title compound, C4H5N2+·C6HCl2O4·H2O, have been determined at 225 and 120 K. In the high‐temperature phase, stable above 198 K, the transition temperature of which has been determined by 35Cl nuclear quadrupole resonance and differential thermal analysis measurements, the three components are held together by O—H...O, N...H...O, C—H...O and C—H...Cl hydrogen bonds, forming a centrosymmetric 2+2+2 aggregate. In the N...H...O hydrogen bond formed between the pyrimidin‐1‐ium cation and the water molecule, the H atom is disordered over two positions, resulting in two states, viz. pyrimidin‐1‐ium–water and pyrimidine–oxonium. In the low‐temperature phase, the title compound crystallizes in the same monoclinic space group and has a similar molecular packing, but the 2+2+2 aggregate loses the centrosymmetry, resulting in a doubling of the unit cell and two crystallographically independent molecules for each component in the asymmetric unit. The H atom in one N...H...O hydrogen bond between the pyrimidin‐1‐ium cation and the water molecule is disordered, while the H atom in the other hydrogen bond is found to be ordered at the N‐atom site with a long N—H distance [1.10 (3) Å].  相似文献   

9.
The intermetallic phases Tb2NiAl4Ge2 and Ce2NiAl6‐xGe4‐y (x ∼ 0.24, y ∼ 1.34) were synthesized in molten Al at temperatures below 1000 °C. Both compounds adopt the tetragonal space group I4/mmm with cell parameters of a= 4.1346(2) Å c = 19.3437(7) Å for Tb2NiAl4Ge2 and a= 4.1951(9) Å and c = 26.524(7) Å for Ce2NiAl6‐xGe4‐y. The Tb2NiAl4Ge2 structure features NiAl4Ge2 layers separated by a double layer of rare earth ions. The Ce2NiAl6‐xGe4‐y (x ∼ 0.24, y ∼ 1.34) structure also contains the NiAl4Ge2 layers along with a vacancy defect PbO‐type Al2‐xGe2‐y layer, and is related to the Ce2NiGa10 structure type. Ordering of vacancies cause the formation of a 3ax3b superstructure in the crystal as seen by electron diffraction experiments. Tb2NiAl4Ge2 exhibits Curie‐Weiss paramagnetic behavior with an antiferromagnetic transition observed at ∼20 K. Ce2NiAl6‐xGe4‐y shows a much more complex magnetic behavior possibly due to temperature induced variation in the valency of the Ce atoms.  相似文献   

10.
A series of polyester‐amides that contain phosphorus were synthesized by low temperature solution condensation of 1,4‐bis(3‐aminobenzoyloxy)‐2‐(6‐oxido‐6H‐dibenz〈c,e〉〈1,2〉oxaphosphorin‐6‐yl) phenylene (III) with various aromatic acid chlorides in N‐methyl pyrrolidone (NMP). All polyester‐amides are amorphous and readily soluble in many organic solvents such as dimethylacetamide (DMAc), NMP, dimethylsulfoxide, and dimethylformamide at room temperature or on heating. Light yellow and flexible films of these polyester‐amides could be cast from the DMAc solutions. The polymers with an inherent viscosity of 0.26–0.72 dL/g were obtained in quantitative yields. These polyester‐amides have good mechanical properties (G′ of ∼ 109 Pa up to 200°C) and good thermal and flame retardant properties. The glass transition temperatures of these polyester‐amides ranged from 250 to 273°C. The degradation temperatures (Td 5%) in nitrogen ranged from 466 to 478°C and the char yields at 800°C were 59.6–65.2%. The limiting oxygen indexes of these polyester‐amides ranged from 35 to 43. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 891–899, 1999  相似文献   

11.
The title compound, [Mn(CF3COO)2(H2O)4], crystallizes in the monoclinic space group C2/c. At about 215 K, it undergoes a reversible phase transition, which leads to crystal twinning. The crystal structure of the high‐temperature phase was determined at 220 K. The Mn2+ ion lies on a twofold axis and is octahedrally coordinated by two monodentate tri­fluoro­acetate ligands in apical positions and by four equatorial aqua ligands, two of which lie on the twofold axis. Hydro­gen‐bonding interactions connect the complex mol­ecules, generating a three–dimensional network.  相似文献   

12.
Multifunctional materials that exhibit different physical properties in a single phase have potential for use in multifunctional devices. Herein, we reported an organic–inorganic hybrid compound [(18‐crown‐6)K][Fe(1)Cl(1)4]0.5[Fe(2)Cl(2)4]0.5 ( 1 ) by incorporating KCl and FeCl3 into a 18‐crown‐6 molecule, which acts as a host of the six O atoms providing a lone pair of electrons to anchor the guest potassium cation, and [FeCl4]? as a counterion for charge balance to construct a complex salt. This salt exhibited a one‐step reversible structural transformation giving two separate high and low temperature phases at 373 K, which was confirmed by systematic characterizations including differential scanning calorimetry (DSC) measurements, variable‐temperature structural analyses, and dielectric, impedance, variable‐temperature magnetic susceptibility measurements. Interestingly, the structural transformation was coupled to both hysteretic dielectric phase transition, conductivity switch and magnetic‐phase transition at 373 K. This result gives an idea for designing a new type of phase‐transition materials harboring technologically important magnetic, conductivity and dielectric properties.  相似文献   

13.
Metallographical and differential thermoanalytical (DTA) investigatitons indicate that the well known phosphide Co2P (Pearson code oP12, space group Pnma, Co2Si type) is not stable up to the melting point, T = 1659 K; it is therefore designated as the low‐temperature phase α‐Co2P. In the temperature range from 1428 to 1659 K, another, high‐temperature phase, designated as β‐Co2P, exists. X‐ray powder diffraction investigation of liquid quenched alloys in the composition range xP = 0.25 to 0.335, with xP as the mole fraction, show that the high‐temperature phase β‐Co2P is isotypic with Fe2P (hP9, P 6 2m). For the ideal composition Co2P, the unit cell parameters are: a = 5.742(2) Å, c = 3.457(5) Å, c/a = 0.621. Among the binary transition metal‐containing phosphides and arsenides isotypic with Fe2P, β‐Co2P is the only known high‐temperature phase and it shows (i) the highest axial ratio c/a and (ii) the “smallest” distortion of the hcp substructure formed by the transition metals atoms in the Fe2P structure type.  相似文献   

14.
In the low‐temperature phase of di­bromo­mesityl­ene (1,3‐di­bromo‐2,4,6‐tri­methyl­benzene), C9H10Br2, the mol­ecule deviates significantly from the C3h molecular symmetry encountered in tri­bromo­mesityl­ene (1,3,5‐tri­bromo‐2,4,6‐tri­methyl­benzene), even for the endocyclic bond angles. An apparent C2v molecular symmetry is observed. The angle between the normal to the molecular plane and the normal to the (100) plane is ∼20°. The overall displacement was analysed at 120 K with rigid‐body‐motion tensor analysis. The methyl group located intermediate between the two Br atoms is rotationally disordered at both temperatures. This disorder was treated using two different approaches at 14 K, viz. the conventional split‐atom model and a model using the special annular shapes of the atomic displacement parameters that are available in CRYSTALS [Watkin, Prout, Carruthers & Betteridge (1999). Issue 11. Chemical Crystallography Laboratory, Oxford, England], but only through the latter approach at 120 K. The disorder locally breaks the C2v molecular symmetry at 14 K only. Intra‐ and intermolecular contacts are described and discussed in relation to this methyl‐group disorder. The bidimensional pseudo‐hexagonal structural topology of tri­halogeno­mesityl­enes is altered in di­bromo­mesityl­ene insofar as the (100) molecular layers are undulated and are not coplanar as a result of an alternating tilt angle of ∼34° propagating along the [011] and [01] directions between successive antiferroelectric molecular columns oriented roughly along the a axis.  相似文献   

15.
In this contribution, the solid‐state low‐temperature phase structure of [2,2]‐paracyclophane is unambiguously characterised by single‐crystal X‐ray analysis. Additionally, a heat capacity measurement was undertaken, which proves the existence of a λ‐type phase transition at 45 K, a transition that is connected with the formation of a secondary Cp/T feature at 60 K. The low‐temperature phase (<45 K) crystallises in the lower symmetry space group P$\bar 4$ n2, whereas the high‐temperature phase (>60 K) crystallises in space group P42/mnm. This proves what has been postulated both by experimental and theoretical chemists but has repeatedly been dismissed as speculation many times.  相似文献   

16.
Thermogravimetric and difference thermal analyses show that the reactions of lithium nitride with the transition metals Cu and Ni under molecular nitrogen to form phases Li2[(Li1‐xMIx)N] take place above 673 K. The maximum weight gains are reached at 926 K and 968 K for M = Cu and Ni, respectively. At higher temperatures, the ternary phases Li2[(Li1‐xMIx)N] decompose, limiting the substitutional level x. In the temperature range of 773 K — 873 K, the successful synthesis of Li2[(Li1‐xNiIx)N] (0 < x ≤ 0.85(1)) single phase products is demonstrated. Maximum substitution obtained for the Cu phases is xmax= 0.43(1). The dependence of the lattice parameters of the hexagonal unit cell on x is almost linear. The magnetic moment of M strongly depends on x. At low x the magnetic moments in phases with M = Ni are presumably enhanced by orbital effects. A decrease of μeff with x to μeff(x = 1) → 0 is explained by delocalization of the magnetic moments and by the gradual formation of a metal for the hypothetical compound Li2[NiN] (x = 1). XAS spectroscopy at the transition metal K‐edges shows that Cu and Ni principally correspond to d10‐ and d9‐configurations, respectively.  相似文献   

17.
本文用精密自动绝热量热仪测定了2-甲基-2-丁醇在80~305 K温区的热容,从热容曲线(Cp-T) 发现三个固-固相变和一个固-液相变, 其相变温度分别为T = 146.355, 149.929, 214.395, 262.706 K。从实验热容数据用最小二乘法得到以下四个温区的热容拟合方程。在80~140K温区, Cp,m = 39.208 + 8.0724X - 1.9583X2 + 10.06X3 + 1.799X4 - 7.2778X5 + 1.4919X6, 折合温度X = (T –110) / 30; 在 155 ~ 210 K温区, Cp,m = 70.701 + 10.631X + 12.767X2 + 0.3583X3 - 22.272X4 - 0.417X5 + 12.055X6, X = (T –182.5) /27.5; 在220 ~ 250 K温区, Cp,m = 99.176 + 7.7199X - 26.138X2 + 28.949X3 + 0.7599X4 - 25.823X5 + 21.131X6, X = (T – 235)/15; 在 270~305 K温区, Cp,m =121.73 + 16.53 X- 1.0732X2 - 34.937X3 - 19.865X4 + 24.324X5 + 18.544X6, X = (T –287.5)/17.5。从实验热容计算出相变焓分别为0.9392, 1.541, 0.6646, 2.239 kJ×mol-1; 相变熵分别为6.417, 10.28, 3.100, 8.527 J×K-1×mol-1。根据热力学函数关系式计算出80~305 K温区每隔5 K的热力学函数值 [HT –H298.15]和 [ST –S298.15]。  相似文献   

18.
The title compound, (C16H36N)2[W6Cl14], undergoes a reversible phase transition at 268 (1) K. The structure at 150 and 200 K has monoclinic (P21/c) symmetry. Both crystallographically independent tungsten chloride cluster anions sit on crystallographic inversion centers [symmetry codes: (−x, −y + 1, −z) and (−x + 1, −y + 2, −z)]. Two previous studies at room temperature describe the structure in the space group P21/n with a unit‐cell volume approximately half the size of the low‐temperature unit cell [Zietlow, Schaefer et al. (1986). Inorg. Chem. 25 , 2195–2198; Venkataraman et al. (1999). Inorg. Chem. 38 , 828–830]. The unit cells of the room‐ and low‐temperature polymorphs are closely related. The hydrocarbon chain of one of the tetrabutylammonium cations is disordered at both 150 and 200 K.  相似文献   

19.
The crystal structure of the title compound, C26H34O4, shows a reversible phase transition at about 178 K. The structure of the high‐temperature phase contains two independent mol­ecules related by pseudosymmetry elements. Cooling through the phase‐transition temperature results in a doubling of the c axis. The low‐temperature structure contains four independent mol­ecules related by pseudosymmetry elements. The phase transition results in a rearrangement of some weak intermolecular C—H?O interactions. The number of very weak C—H?O interactions, with H?O distances between 2.8 and 2.9 Å, is increased in the low‐temperature structure.  相似文献   

20.
Chiral columns formed by a helical cis‐polyphenylacetylene (PPA) derivative P1 are reversibly switched during a phase transition between two chiral columnar phases: the frustrated Φh3D‐SL phase containing four chains at low temperature and a hexagonal columnar phase Φh at high temperature, accompanied by a simultaneous conformational change. The helix–helix transition along the PPA backbone during the Φh3D‐SL‐Φh transition makes the uniaxially oriented P1 capable of reversibly and reproducibly elongating (132 %) upon heating and contracting upon cooling, exhibiting the behavior of a two‐way shape actuator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号