首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Precise structural modifications of amino acids are of importance to tune biological properties or modify therapeutical capabilities relevant to drug discovery. Herein, we report a ruthenium-catalyzed meta-C–H deaminative alkylation with easily accessible amino acid-derived Katritzky pyridinium salts. Likewise, remote C–H benzylations were accomplished with high levels of chemoselectivity and remarkable functional group tolerance. The meta-C–H activation approach combined with our deaminative strategy represents a rare example of selectively converting C(sp3)–N bonds into C(sp3)–C(sp2) bonds.

Precise structural modifications of amino acids are of importance to tune biological properties or modify therapeutical capabilities relevant to drug discovery.  相似文献   

2.
A mechanistically unique functionalization strategy for a benzylic C(sp3)–H bond has been developed based on the facile oxidation event of indole substrates. This novel pathway was initiated by efficient radical generation at the benzylic position of the substrate, with subsequent transition metal catalysis to complete the overall transformation. Ultimately, an aryl or an acyl group could be effectively delivered from an aryl (pseudo)halide or an acid anhydride coupling partner, respectively. The developed method utilizes mild conditions and exhibits a wide substrate scope for both substituted indoles and C(sp2)-based reaction counterparts. Mechanistic studies have shown that competitive hydrogen atom transfer (HAT) processes, which are frequently encountered in conventional methods, are not involved in the product formation process of the developed strategy.

A mechanistically distinct Ni-catalysed benzylic functionalization of indoles is developed by the facile oxidation of arenes. The method exhibits a wide substrate scope and pronounced chemoselectivity that cannot be accessed via known protocols.  相似文献   

3.
A direct Pd(ii)-catalyzed kinetic resolution of heteroaryl-enabled sulfoximines through an ortho-C–H alkenylation/arylation of arenes has been developed. The coordination of the sulfoximine pyridyl-motif and the chiral amino acid MPAA ligand to the Pd(ii)-catalyst controls the enantio-discriminating C(aryl)–H activation. This method provides access to a wide range of enantiomerically enriched unreacted aryl-pyridyl-sulfoximine precursors and C(aryl)–H alkenylation/arylation products in good yields with high enantioselectivity (up to >99% ee), and selectivity factor up to >200. The coordination preference of the directing group, ligand effect, geometry constraints, and the transient six-membered concerted-metalation–deprotonation species dictate the stereoselectivity; DFT studies validate this hypothesis.

A Pd/MPAA catalysed KR of heteroaryl substituted sulfoximines through C–H alkenylation and arylation (up to >99% ee) is developed. In-depth DFT studies uncover the salient features.  相似文献   

4.
Transition metal-catalysed C–H bond functionalisations have been extensively developed in organic and medicinal chemistry. Among these catalytic approaches, the selective activation of C(sp3)–H and C(sp2)–H bonds is particularly appealing for its remarkable synthetic versatility, yet it remains highly challenging. Herein, we demonstrate the first example of temperature-dependent selective C–H functionalisation of unactivated C(sp3)–H or C(sp2)–H bonds at remote positions through palladium catalysis using 7-pyridyl-pyrazolo[1,5-a]pyrimidine as a new directing group. At 120 °C, C(sp3)–H arylation was triggered by the chelation of a rare [6,5]-fused palladacycle, whereas at 140 °C, C(sp2)–H arylation proceeded instead through the formation of a 16-membered tetramer containing four 7-pyridyl-pyrazolo[1,5-a]pyrimidine–palladium chelation units. The subsequent mechanistic study revealed that both C–H activations shared a common 6-membered palladacycle intermediate, which was then directly transformed to either the [6,5]-fused palladacycle for C(sp3)–H activation at 120 °C or the tetramer for C(sp2)–H arylation at 140 °C with catalytic amounts of Pd(OAc)2 and AcOH. Raising the temperature from 120 °C to 140 °C can also convert the [6,5]-fused palladacycle to the tetramer with the above-mentioned catalysts, hence completing the C(sp2)–H arylation ultimately.

Unprecedented 16-membered tetramer or [6,5]-fused palladacycle, mutually shadowboxing-like transformed from the shared common intermediate, accomplishes the Pd-catalysed temperature-dependent selective arylation of C(sp2)–H or C(sp3)–H.  相似文献   

5.
Supramolecular photocatalysts comprising [Ru(diimine)3]2+ photosensitiser and fac-[Re(diimine)(CO)3{OC(O)OC2H4NR2}] catalyst units can be used to reduce CO2 to CO with high selectivity, durability and efficiency. In the presence of triethanolamine, the Re catalyst unit efficiently takes up CO2 to form a carbonate ester complex, and then direct photocatalytic reduction of a low concentration of CO2, e.g., 10% CO2, can be achieved using this type of supramolecular photocatalyst. In this work, the mechanism of the photocatalytic reduction of CO2 was investigated applying such a supramolecular photocatalyst, RuC2Re with a carbonate ester ligand, using time-resolved visible and infrared spectroscopies and electrochemical methods. Using time-resolved spectroscopic measurements, the kinetics of the photochemical formation processes of the one-electron-reduced species RuC2(Re)−, which is an essential intermediate in the photocatalytic reaction, were clarified in detail and its electronic structure was elucidated. These studies also showed that RuC2(Re)− is stable for 10 ms in the reaction solution. Cyclic voltammograms measured at various scan rates besides temperature and kinetic analyses of RuC2(Re)− produced by steady-state irradiation indicated that the subsequent reaction of RuC2(Re)− proceeds with an observed first-order rate constant of approximately 1.8 s−1 at 298 K and is a unimolecular reaction, independent of the concentrations of both CO2 and RuC2(Re)−.

Formation processes and reactivity of an important intermediate of photocatalytic CO2 reduction, one-electron reduced species of a Ru(ii)–Re(i) supramolecular photocatalyst with a carbonate ester ligand, were investigated in detail.  相似文献   

6.
Construction of C(sp2)–C(sp3) bonds via regioselective coupling of C(sp2)–H/C(sp3)–H bonds is challenging due to the low reactivity and regioselectivity of C–H bonds. Here, a novel photoinduced Ru/photocatalyst-cocatalyzed regioselective cross-dehydrogenative coupling of dual remote C–H bonds, including inert γ-C(sp3)–H bonds in amides and meta-C(sp2)–H bonds in arenes, to construct meta-alkylated arenes has been accomplished. This metallaphotoredox-enabled site-selective coupling between remote inert C(sp3)–H bonds and meta-C(sp2)–H bonds is characterized by its unique site-selectivity, redox-neutral conditions, broad substrate scope and wide use of late-stage functionalization of bioactive molecules. Moreover, this reaction represents a novel case of regioselective cross-dehydrogenative coupling of unactivated alkanes and arenes via a new catalytic process and provides a new strategy for meta-functionalized arenes under mild reaction conditions. Density functional theory (DFT) calculations and control experiments explained the site-selectivity and the detailed mechanism of this reaction.

A novel photoinduced Ru/photocatalyst-cocatalyzed regioselective cross-dehydrogenative coupling of dual remote C–H bonds, including inert γ-C(sp3)–H bonds in amides and meta-C(sp2)–H bonds in arenes, to construct meta-alkylated arenes has been accomplished.  相似文献   

7.
The interlay sliding of two-dimensional (2D) metal–organic and covalent–organic frameworks (MOFs and COFs) affects not only the layout features of the structures, but also the functional output of the materials. However, the control of interlay stacking is the major hurdle that needs to be overcome to construct new functional layer materials. Herein, we report the preparation of a pair of isostructural 2D copper(i) organic frameworks with an eclipsed AA stacking structure, namely JNM-3-AA, and a staggered ABC stacking topology, denoted JNM-3-ABC, by combining the chemistry of MOFs and COFs. The variation of interlayer stacking largely influences their functionality, including porosity (BET surface areas of 695.61 and 34.22 m2 g−1 for JNM-3-AA and JNM-3-ABC, respectively), chemical stability, and catalytic activities (less than 10% or ∼86% yield using JNM-3-AA or JNM-3-ABC as catalysts for click reaction, respectively). More interestingly, the structure transformation from JNM-3-ABC to JNM-3-AA is readily achieved by simple addition of trifluoroacetic acid accompanied by the extension of porosities from BET surface areas of 34.22 to 441.22 m2 g−1, resulting in in situ acceleration of the adoption rate (removal efficiency increases from ∼10 to 99.9%), which is rarely observed in 2D MOFs and COFs.

The addition of TFA can trigger the interlay sliding of 2D copper(i) organic frameworks prepared by combing the chemistry of MOFs and COFs. The variation of interlay stacking largely affected the porosity, chemical stability and catalytic activities.  相似文献   

8.
Fe–N-heterocyclic carbene (NHC) complexes attract increasing attention as photosensitisers and photoredox catalysts. Such applications generally rely on sufficiently long excited state lifetimes and efficient bimolecular quenching, which leads to there being few examples of successful usage of Fe–NHC complexes to date. Here, we have employed [Fe(iii)(btz)3]3+ (btz = (3,3′-dimethyl-1,1′-bis(p-tolyl)-4,4′-bis(1,2,3-triazol-5-ylidene))) in the addition of alkyl halides to alkenes and alkynes via visible light-mediated atom transfer radical addition (ATRA). Unlike other Fe–NHC complexes, [Fe(iii/ii)(btz)3]3+/2+ benefits from sizable charge transfer excited state lifetimes ≥0.1 ns in both oxidation states, and the Fe(iii) 2LMCT and Fe(ii) 3MLCT states are strong oxidants and reductants, respectively. The combined reactivity of both excited states enables efficient one-electron reduction of the alkyl halide substrate under green light irradiation. The two-photon mechanism proceeds via reductive quenching of the Fe(iii) 2LMCT state by a sacrificial electron donor and subsequent excitation of the Fe(ii) product to its highly reducing 3MLCT state. This route is shown to be more efficient than the alternative, where oxidative quenching of the less reducing Fe(iii) 2LMCT state by the alkyl halide drives the reaction, in the absence of a sacrificial electron donor.

An iron complex with N-heterocyclic carbene ligands engages in efficient photoredox catalysis via excited state electron transfer reactions of its Fe(ii) and Fe(iii) oxidation states.  相似文献   

9.
Pd-catalyzed C(sp3)–H oxygenation has emerged as an attractive strategy for organic synthesis. The most commonly proposed mechanism involves C(sp3)–H activation followed by oxidative addition of an oxygen electrophile to give an alkylpalladium(iv) species and further C(sp3)–O reductive elimination. In the present study of γ-C(sp3)–H acyloxylation of amine derivatives, we show a different mechanism when tert-butyl hydroperoxide (TBHP) is used as an oxidant—namely, a bimetallic oxidative addition-oxo-insertion process. This catalytic model results in an alkoxypalladium(ii) intermediate from which acyloxylation and alkoxylation products are formed. Experimental and computational studies, including isolation of the putative post-oxo-insertion alkoxypalladium(ii) intermediates, support this mechanistic model. Density functional theory reveals that the classical alkylpalladium(iv) oxidative addition pathway is higher in energy than the bimetallic oxo-insertion pathway. Further kinetic studies revealed second-order dependence on [Pd] and first-order on [TBHP], which is consistent with DFT analysis. This procedure is compatible with a wide range of acids and alcohols for γ-C(sp3)–H oxygenation. Preliminary functional group transformations of the products underscore the great potential of this protocol for structural manipulation.

Alkoxypalladium(ii) species lead to γ-C(sp3)–H acyloxylation and alkoxylation products using tert-butyl hydroperoxide as the oxidant.  相似文献   

10.
Sonodynamic therapy (SDT) has unique advantages in deep tumour ablation due to its deep penetration depth, showing great preclinical and clinical potential. Herein, a platinum(ii)–cyanine complex has been designed to investigate its potential as a SDT anticancer agent. It generates singlet oxygen (1O2) under ultrasound (US) irradiation or light irradiation, and exhibits US-cytotoxicity in breast cancer 4T1 cells but with negligible dark-cytotoxicity. Mechanistic investigations reveal that Pt-Cy reduces the cellular GSH and GPX4, and triggers cancer cell ferroptosis under US irradiation. The metabolomics analysis illustrates that Pt-Cy upon US treatment significantly dysregulates glutathione metabolism, and finally induces ferroptosis. In vivo studies further demonstrate that Pt-Cy inhibits tumor growth under US irradiation and its efficiency for SDT is better than that for PDT in vivo. This is the first example of platinum(ii) complexes for sonodynamic therapy. This work extends the biological applications of metal complexes from PDT to SDT.

A novel platinum(ii)–cyanine complex showed a greater excellent sonodynamic therapeutic effect than photodynamic therapy in vivo. This work expands the biological applications of metal complexes from traditional photodynamic therapy to sonodynamic therapy.  相似文献   

11.
A catalytic system for intramolecular C(sp2)–H and C(sp3)–H amination of substituted tetrazolopyridines has been successfully developed. The amination reactions are developed using an iron-porphyrin based catalytic system. It has been demonstrated that the same iron-porphyrin based catalytic system efficiently activates both the C(sp2)–H and C(sp3)–H bonds of the tetrazole as well as azide-featuring substrates with a high level of regioselectivity. The method exhibited an excellent functional group tolerance. The method affords three different classes of high-value N-heterocyclic scaffolds. A number of important late-stage C–H aminations have been performed to access important classes of molecules. Detailed studies (experimental and computational) showed that both the C(sp2)–H and C(sp3)–H amination reactions involve a metalloradical activation mechanism, which is different from the previously reported electro-cyclization mechanism. Collectively, this study reports the discovery of a new class of metalloradical activation modes using a base metal catalyst that should find wide application in the context of medicinal chemistry, drug discovery and industrial applications.

A catalytic system for intramolecular C(sp2)–H and C(sp3)–H amination of substituted tetrazolopyridines has been successfully developed.  相似文献   

12.
A chelation-assisted oxidative addition of gold(i) into the C–C bond of biphenylene is reported here. The presence of a coordinating group (pyridine, phosphine) in the biphenylene unit enabled the use of readily available gold(i) halide precursors providing a new, straightforward entry towards cyclometalated (N^C^C)- and (P^C)-gold(iii) complexes. Our study, combining spectroscopic and crystallographic data with DFT calculations, showcases the importance of neighboring, weakly coordinating groups towards the successful activation of strained C–C bonds by gold.

Pyridine and phosphine directing groups promote the C–C activation of biphenylene by readily available gold(i) halides rendering a new entry to (N^C^C)- and (P^C)-gold(iii) species.

Activation of C–C bonds by transition metals is challenging given their inertness and ubiquitous presence alongside competing C–H bonds.1 Both the intrinsic steric hindrance as well as the highly directional character of the p orbitals involved in the σC–C bond impose a high kinetic barrier for this type of processes.2,3 Biphenylene, a stable antiaromatic system featuring two benzene rings connected via a four-membered cycle, has found widespread application in the study of C–C bond activation. Since the seminal report from Eisch et al. on the oxidative addition of a nickel(0) complex into the C–C bond of biphenylene,4 several other late transition metals have been successfully applied in this context.5 Interestingly, despite the general reluctance of gold(i) to undergo oxidative addition,6 its oxidative insertion into the C–C bond of biphenylene was demonstrated in two consecutive reports by the groups of Toste7a and Bourissou,7b respectively. The high energy barrier associated with the oxidation of gold could be overcome by the utilization of gold(i) precursors bearing ligands that exhibit either a strongly electron-donating character (e.g. IPr = [1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene])7a or small bite angles (e.g. DPCb = diphosphino-carborane).7b,8 In line with these two approaches, more sophisticated bidentate (N^C)- and (P^N)-ligated gold(i) complexes have also been shown to aid the activation of biphenylene at ambient temperature (Scheme 1a).7c,dOpen in a separate windowScheme 1(a) Previous reports on oxidative addition of ligated gold(i) precursors onto biphenylene. (b) This work: pyridine- and phosphine-directed C–C bond activation of biphenylene by commercially available gold(i) halides.In this context, we hypothesized that the oxidative insertion of gold(i) into the C–C bond of biphenylene could be facilitated by the presence of a neighboring chelating group.9 This approach would not only circumvent the need for gold(i) precursors featuring strong σ-donor or highly tailored bidentate ligands but also offer a de novo entry towards interesting, less explored ligand templates. However, recent work by Breher and co-workers showcased the difficulty of achieving such a transformation.10Herein, we report the oxidative insertion of readily available gold(i) halide precursors into the C–C bond of biphenylene. The appendage of both pyridine and phosphine donors in close proximity to the σC–C bond bridging the two aromatic rings provides additional stabilization to the metal center and results in a de novo entry to cyclometalated (N^C^C)- and (P^C)gold(iii) complexes (Scheme 1b).Our study commenced with the preparation of 5-chloro-1-pyridino-biphenylene system 2via Pd-catalyzed Suzuki cross coupling reaction between 2-bromo-3-methylpyridine and 2-(5-chlorobiphenylen-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 1 (Scheme 2).11 To our delight, the reaction of 2 with gold(i) iodide in toluene at 130 °C furnished complex κ3-(N^C^C)Au(iii)–I 3 in 60% yield.12,13 Complex 3 was isolated as yellow plate-type crystals from the reaction mixture and its molecular structure was unambiguously assigned by NMR spectroscopy, high-resolution mass spectrometry (HR-MS) and crystallographic analysis. Complex 3 exhibits the expected square-planar geometry around the metal center, with a Au–I bond length of 2.6558(3) Å.14 The choice of a neutral weakly bound gold(i)-iodide precursor is key for a successful reaction outcome: similar reactions in the presence of [(NHC)AuCl + AgSbF6] failed to deliver the desired biscyclometalation adducts, as reported by Breher et al. in ref. 10. The oxidative insertion of gold(i) iodide into the four-membered ring of pyridino-substituted biphenylene provides a novel and synthetically efficient entry to κ3-(N^C^C)gold(iii) halides. These species have recently found widespread application as precursors for the characterization of highly labile, catalytically relevant gold(iii) intermediates,15ad as well as for the preparation of highly efficient emitters in OLEDs.15eg Previous synthetic routes towards these attractive biscyclometalated gold(iii) systems involved microwave-assisted double C–H functionalization reactions that typically proceed with low to moderate yields.15aOpen in a separate windowScheme 2Synthesis of complex 3via oxidative addition of Au(i) into the C–C bond of pyridine-substituted biphenylene. X-ray structures of complex 3 with atoms drawn using 50% probability ellipsoids. Hydrogen atoms have been omitted for clarity. Additional selected bond distances [Å]: N–Au = 2.126(2), C1–Au = 1.973(2), C2–Au = 2.025(2), Au–I = 2.6558(3) and bond angles [deg]: N–Au–I = 99.25(6), N–Au–C1 = 79.82(9), C1–Au–C2 = 81.2(1), C2–Au–I = 99.73(8). For experimental details, see ESI.Encouraged by the successful results obtained with the pyridine-substituted biphenylene and considering the prominent use of phosphines in gold chemistry,6,16 we wondered whether the same reactivity would be observed for a P-containing system. To this end, both adamantyl- and tert-butyl-substituted phosphines were appended in C1 position of the biphenylene motif. Starting from 5-chlorobiphenylene-1-carbaldehyde 4, phosphine-substituted biphenylenes 5a and 5b could be accessed in 3 steps (aldehyde reduction to the corresponding alcohol, Appel reaction and nucleophilic displacement of the corresponding benzylic halide) in 64 and 57% overall yields, respectively.13 The reactions of 5a and 5b with commercially available gold(i) halides (Me2SAuCl and AuI) furnished the corresponding mononuclear complexes 7a–b and 8a–b, respectively (Scheme 3).13 All these complexes were fully characterized and the structures of 7a, 7b and 8a were unambiguously characterized by X-ray diffraction analysis.13 Interestingly, the nature of the halide has a clear effect on the chemical shift of the phosphine ligand so that a Δδ of ca. 5 ppm can be observed in the 31P NMR spectra of 7a–b (Au–Cl) compared to 8a–b (Au–I), the latter being the more deshielded. The Au–X bond length is also impacted, with a longer Au–I distance (2.5608(1) Å for 8a) compared to that measured in the Au–Cl analogue (2.2941(7) Å for 7a) (Δd = 0.27 Å).13Open in a separate windowScheme 3Synthesis and reactivity of complexes 7a–b, 8a–b, 9 and 10. X-ray structure of complexes 11b, 12 and 14 with atoms drawn using 50% probability ellipsoids. Hydrogen atoms have been omitted for clarity. For experimental details and X-ray structures see ESI.Despite numerous attempts to promote the C–C activation in these complexes,10,13 all reactions resulted in the formation of highly stable cationic species 11a–b and 12, which could be easily isolated from the reaction media. In the case of cationic mononuclear-gold(i) complexes 11, a ligand scrambling reaction in which the chloride ligand is replaced by a phosphine in the absence of a scavenger, a process previously described for gold(i) species, can be used to justify the reaction outcome.17 The formation of dinuclear gold complex 12 can be ascribed to the combination of a strong aurophilic interaction between the two gold centers (Au–Au = 2.8874(4) Å) and the stabilizing η2-coordination of the metal center to the aromatic ring of biphenylene. Similar η2-coordinated gold(i) complexes have been reported but, to the best of our knowledge, only as mononuclear species.18Taking into consideration the observed geometry of complexes 7a–b in the solid state,13 the facile formation of stable cationic species 11 and 12 and the lack of reactivity of the gold(i) iodides 8a–b, we hypothesized that the free rotation around the C–P bond was probably restricted, placing the gold(i) center away from the biphenylene system and thus preventing the desired oxidative insertion reaction. To overcome this problem, we set out to elongate the arm bearing the phosphine unit with an additional methylene group, introduced via a Wittig reaction from compound 4 to yield ligand 6, prepared in 4 steps in 27% overall yield. Coordination with Me2SAuCl and AuI resulted in gold(i) complexes 9 and 10, respectively (Scheme 3). The structure of 9 was unambiguously assigned by X-ray diffraction analysis and a similar environment around the metal center to that determined for complex 7a was observed for this complex.13With complexes 9 and 10 in hand, we explored their reactivity towards C–C activation of the four-membered ring of biphenylene.19 After chloride abstraction and upon heating at 100 °C for 5 hours, ring opening of the biphenylene system was observed for complex 9. Interestingly, formation of mono-cyclometalated adduct 13 was exclusively observed (the structure of 13 was confirmed by 1H, 13C, 31P, 19F, 11B and 2D NMR spectroscopy and HR-MS).13 The solvent appears to play a major role in this process, as performing the reaction in non-chlorinated solvents resulted in stable cationic complexes similar to 11.13,20,21 The presence of adventitious water is likely responsible for the formation of the monocyclometalated (P^C)gold(iii) complex 13 as when the reaction was carried out in C2H4Cl2 previously treated with D2O, the corresponding deuterated adduct 13-d could be detected in the reaction media. These results showcase the difficulties associated with the biscyclometalation for P-based complexes as well as the labile nature of the expected biscyclometalated adducts. Interestingly though, these processes can be seen as a de novo entry towards relatively underexplored (P^C)gold(iii) species.22The C–C activation was further confirmed by X-ray diffraction analysis of the phosphonium salt 14, which arise from the reductive elimination at the gold(iii) center in 13 upon exchange of the BF4 counter-anion with the weakly coordinating sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBArF).13,23 The phosphorus atom is four-coordinate, with weak bonding observed to the distant counter-anion and a distorted tetrahedral geometry (C1–P–C2 = 95.05(17), C2–P–C3 = 112.1(1), C3–P–C4 = 116.6(1), C4–P–C1 = 107.4(2) deg). These results represent the third example in which the C(sp2)–P bond reductive elimination at gold(iii) has been reported.24Further, it is important to note that, in contrast to the reactivity observed for the pyridine-substituted biphenylene, neither P-coordinated gold(i) iodo complexes 8a, 8b nor 10 reacted to give cyclometalated products despite prolonged heating, which highlights the need for highly reactive cationized gold(i) species to undergo oxidative addition when phosphine ligands are flanking the C–C bond.13To get a deeper understanding on the observed differences in reactivity for the N- vs. P-based directing groups, ground- and transition-state structures for the oxidative insertion of gold(i) halides in C1-substituted biphenylenes were computed by DFT calculations. The reactions of Py-substituted 2 with AuI to give 3 (I) and those of P-substituted 7a (II) and 9 (III) featuring the cationization of the gold(i) species were chosen as models for comparative purposes with the experimental conditions (Fig. 1 and S1–S10 in the ESI).25–27 The computed activation energies for the three processes are in good agreement with the experimental data. The pyridine-substituted biphenylene I exhibits the lowest activation barrier for the oxidative insertion process (ΔG = 34.4 kcal mol−1). The reaction on the phosphine-substituted derivatives II and III proved to be, after cationization of the corresponding gold(i) halide complexes (II-BF4, III-BF4) higher in energy (ΔG = 39.6 and 46.3 kcal mol−1 respectively), although the obtained values do not rule out the feasibility of the C–C activation process. The transition state between I and I′ exhibits several interesting geometrical features: (a) the biphenylene is significantly bent, (b) the cleavage of the C–C bond is well advanced (dC–C = 1.898 Å in TSIvs. dC–C = 1.504 Å in I), and (c) the two C and the I atoms form a Y-shape around gold with minimal coordination from the pyridine (dN–Au = 2.742 Å in TSIvs. dN–Au = 2.093 Å in I and 2.157 Å in I′, respectively). The transition-state structures found for the P-based ligands (TSII and TSIII) also show an elongation of the C–C bond and display a bent biphenylene. However, much shorter P–Au distances (dP–Au = 2.330 Å for TSII and 2.314 Å for TSIII) can be observed compared to the pyridine-based system, as expected due to the steric and electronic differences between these two coordinating groups. Analogously, longer C–Au distances were also found for the P-based systems (dC1–Au = 2.152 Å for TSIvs. 2.235 Å and 2.204 Å for TSII and TSIII; dC2–Au = 2.143 Å for TSIvs. 2.219 Å and 2.162 Å for TSII and TSIII), with a larger deviation of square planarity for Au in TSIII compared to TSII.28,29 These results suggest that, provided the appropriate distance to the C–C bond is in place, the strong coordination of phosphorous to the gold(i) center does not prevent the C–C activation of biphenylene but other reactions (i.e. formation of diphosphine gold(i) cationic species, protodemetalation) can outcompete the expected biscyclometalation process. In contrast, a weaker donor such as pyridine offers a suitable balance bringing the gold in close proximity to the C–C bond and enables both the oxidative cleavage as well as the formation of the double metalation product.Open in a separate windowFig. 1Energy profile (ΔG and ΔG in kcal mol−1), optimized structures, transition states computed at the IEFPCM (toluene/1,2-dichloroethane)-B3PW91/DEF2QZVPP(Au,I)/6-31++G(d,p)(other atoms) level of theory for the C–C activation of biphenylene with gold(i) iodide from I and gold(i) cationic from II and III. Computed structures of the transition states (TSI, TSII and TSIII) and table summarizing relevant distances.  相似文献   

13.
14.
Manganaelectro-catalyzed azidation of otherwise inert C(sp3)–H bonds was accomplished using most user-friendly sodium azide as the nitrogen-source. The operationally simple, resource-economic C–H azidation strategy was characterized by mild reaction conditions, no directing group, traceless electrons as the sole redox-reagent, Earth-abundant manganese as the catalyst, high functional-group compatibility and high chemoselectivity, setting the stage for late-stage azidation of bioactive compounds. Detailed mechanistic studies by experiment, spectrophotometry and cyclic voltammetry provided strong support for metal-catalyzed aliphatic radical formation, along with subsequent azidyl radical transfer within a manganese(iii/iv) manifold.

The merger of manganese-catalyzed C–H functionalization with electrosynthesis enabled C(sp3)–H azidation devoid of chemical oxidants or photochemical irradiation. Detailed mechanistic studies are supportive of a manganese(iii/iv) electrocatalysis.  相似文献   

15.
A number of new 4‐aryloxymethylene‐2,3,5‐trihydrothiopyrano[3,2‐b]indoles are regioselectively synthesized in 78‐84% yield by the thio‐Claisen rearrangement of 3‐(4′‐aryloxybut‐2′‐ynylthio)indoles. The endocyclic double bonded products are isolated by introducing electron withdrawing acetyl group at the indole nitrogen and also can be converted to the corresponding exocyclic isomers by deacetylation and subsequent heating.  相似文献   

16.
A new one-pot synthesis of 2-(hetero)aryl indoles via sequential C-C coupling followed by C-Si bond cleavage and a subsequent tandem C-C/C-N bond forming reaction is described. A variety of functionalized indole derivatives were prepared by conducting this four step reaction under Pd/C-Cu catalysis. The methodology involved coupling of (trimethylsilyl)acetylene with iodoarenes in the presence of 10% Pd/C-CuI-PPh(3) and triethylamine in MeOH, followed by treating the reaction mixture with K(2)CO(3) in aqueous MeOH, and finally coupling with o-iodoanilides. The single crystal X-ray data of a synthesized indole derivative is presented. Application of the methodology, in vitro pharmacological properties of the synthesized compound, along with a docking study is described.  相似文献   

17.
Excessive consumption of Fe (II) and massive generation of sludge containing Fe (III) from classic Fenton process remains a major obstacle for its poor recycling of Fe (III) to Fe (II). Therefore, the MHACF‐MIL‐101(Cr) system, by introducing H2, Pd0 and MIL‐101(Cr) into Fenton reaction system, was developed at normal temperature and pressure. In this system, the reduction of FeIII back to FeII by solid catalyst Pd/MIL‐101(Cr) for the storage and activation of H2, was accelerated significantly by above 10‐fold and 5‐fold controlled with the H2‐MIL‐101(Cr) system and H2‐Pd0 system, respectively. However, the concentration of Fe (II) generated by the reduction of Fe (III) could not be detected with the only input of H2 and without the addition of MOFs material. In addition, the apparent consumption of Fe (II) in MHACF‐MIL‐101(Cr) system was half of that in classical Fenton system, while more Fe (II) might be reused infinitely in fact. Accordingly, only trace amount of Fe (II) vs H2O2 concentration was needed and hydroxyl radicals through the detection of para‐hydroxybenzoic acid (p‐HBA) as the oxidative product of benzoic acid (BA) by·OH could be continuously generated for the effective degradation of 4‐chlorophenol(4‐CP). The effects of initial pH, concentration of 4‐CP, dosage of Fe2+, H2O2 and Pd/MIL‐101(Cr) catalyst, Pd content and H2 flow were investigated, combined with systematic controlled experiments. Moreover, the robustness and morphology change of Pd/MIL‐101(Cr) were thoroughly analyzed. This study enables better understanding of the H2‐mediated Fenton reaction enhanced by Pd/MIL‐101(Cr) and thus, will shed new light on how to accelerate Fe (III)/Fe (II) redox cycle and develop more efficient Fenton system.  相似文献   

18.
Although Pd(OAc)2-catalysed alkoxylation of the C(sp3)–H bonds mediated by hypervalent iodine(iii) reagents (ArIX2) has been developed by several prominent researchers, there is no clear mechanism yet for such crucial transformations. In this study, we shed light on this important issue with the aid of the density functional theory (DFT) calculations for alkoxylation of butyramide derivatives. We found that the previously proposed mechanism in the literature is not consistent with the experimental observations and thus cannot be operating. The calculations allowed us to discover an unprecedented mechanism composed of four main steps as follows: (i) activation of the C(sp3)–H bond, (ii) oxidative addition, (iii) reductive elimination and (iv) regeneration of the active catalyst. After completion of step (i) via the CMD mechanism, the oxidative addition commences with an X ligand transfer from the iodine(iii) reagent (ArIX2) to Pd(ii) to form a square pyramidal complex in which an iodonium occupies the apical position. Interestingly, a simple isomerization of the resultant five-coordinate complex triggers the Pd(ii) oxidation. Accordingly, the movement of the ligand trans to the Pd–C(sp3) bond to the apical position promotes the electron transfer from Pd(ii) to iodine(iii), resulting in the reduction of iodine(iii) concomitant with the ejection of the second X ligand as a free anion. The ensuing Pd(iv) complex then undergoes the C–O reductive elimination by nucleophilic attack of the solvent (alcohol) on the sp3 carbon via an outer-sphere SN2 mechanism assisted by the X anion. Noteworthy, starting from the five coordinate complex, the oxidative addition and reductive elimination processes occur with a very low activation barrier (ΔG 0–6 kcal mol−1). The strong coordination of the alkoxylated product to the Pd(ii) centre causes the regeneration of the active catalyst, i.e. step (iv), to be considerably endergonic, leading to subsequent catalytic cycles to proceed with a much higher activation barrier than the first cycle. We also found that although, in most cases, the alkoxylation reactions proceed via a Pd(ii)–Pd(iv)–Pd(ii) catalytic cycle, the other alternative in which the oxidation state of the Pd(ii) centre remains unchanged during the catalysis could be operative, depending on the nature of the organic substrate.

This work uses DFT calculations to explore Pd(ii)-catalysed iodine(iii)-mediated alkoxylation of unactivated C(sp3)–H bonds and reveals how important the isomerization is in triggering the oxidative addition of ArIX2 to Pd(ii).  相似文献   

19.
The formation of amide bonds represents one of the most fundamental processes in organic synthesis. Transition-metal-catalyzed activation of acyclic twisted amides has emerged as an increasingly powerful platform in synthesis. Herein, we report the transamidation of N-activated twisted amides by selective N–C(O) cleavage mediated by air- and moisture-stable half-sandwich Ni(II)–NHC (NHC = N-heterocyclic carbenes) complexes. We demonstrate that the readily available cyclopentadienyl complex, [CpNi(IPr)Cl] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), promotes highly selective transamidation of the N–C(O) bond in twisted N-Boc amides with non-nucleophilic anilines. The reaction provides access to secondary anilides via the non-conventional amide bond-forming pathway. Furthermore, the amidation of activated phenolic and unactivated methyl esters mediated by [CpNi(IPr)Cl] is reported. This study sets the stage for the broad utilization of well-defined, air- and moisture-stable Ni(II)–NHC complexes in catalytic amide bond-forming protocols by unconventional C(acyl)–N and C(acyl)–O bond cleavage reactions.  相似文献   

20.
Transition-metal-catalyzed cross-electrophile C(sp2)–(sp3) coupling and C–H alkylation reactions represent two efficient methods for the incorporation of an alkyl group into aromatic rings. Herein, we report a Pd-catalyzed cascade cross-electrophile coupling and C–H alkylation reaction of 2-iodo-alkoxylarenes with alkyl chlorides. Methoxy and benzyloxy groups, which are ubiquitous functional groups and common protecting groups, were utilized as crucial mediators via primary or secondary C(sp3)–H activation. The reaction provides an innovative and convenient access for the synthesis of alkylated phenol derivatives, which are widely found in bioactive compounds and organic functional materials.

A cascade Pd-catalyzed cross-electrophile coupling and C–H alkylation reaction of 2-iodo-alkoxylarenes with alkyl chlorides has been developed by using an ortho-methoxy or benzyloxy group as a mediator via C(sp3)–H activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号