首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Chaumont A  Wipff G 《Inorganic chemistry》2004,43(19):5891-5901
We report a molecular dynamics study of the solvation of the UO2(2+) and Eu3+ cations and their chloro complexes in the [BMI][PF6][H2O] "humid" room-temperature ionic liquid (IL) composed of 1-butyl-3-methylimidazolium+ and PF6- ions and H2O in a 1:1:1 ratio. When compared to the results obtained in dry [BMI][PF6], the present results reveal the importance of water. The "naked" cations form UO2(H2O)5(2+) and Eu(H2O)9(3+) complexes, embedded in a shell of 7 and 8 PF6- anions, respectively. All studied UO2Cln(2-n) and EuCln(3-n) chloro complexes remain stable during the dynamics and coordinate additional H2O molecules in their first shell. UO2Cl4(2-) and EuCl6(3-) are surrounded by an "unsaturated" water shell, followed by a shell of BMI+ cations. According to an energy component analysis, the UO2Cl4(2-) and EuCl6(3-) species, intrinsically unstable toward dissociation, are more stable than their less halogenated analogues in the IL solution, due to the solvation forces. The different chloro species also interact better with the humid than with the dry IL, which hints at the importance of solvent humidity to improve their solubility. Humidity markedly modifies the local ion environment, with major consequences as far as their spectroscopic properties are concerned. We finally compare the aqueous interface of [BMI][PF6] and [OMI][PF6] ionic liquids, demonstrating the importance of imidazolium substituents (N-butyl versus N-octyl) to the nature of the interface and miscibility with water.  相似文献   

2.
Jia D  Zhao Q  Zhang Y  Dai J  Zuo J 《Inorganic chemistry》2005,44(24):8861-8867
New lanthanide thioantimonate(V) compounds, [Ln(en)3(H2O)x(mu(3-x)-SbS4)] (en = ethylenediamine, Ln = La, x = 0, Ia; Ln = Nd, x = 1, Ib) and [Ln(en)4]SbS4.0.5en (Ln = Eu, IIa; Dy, IIb; Yb, IIc), were synthesized under mild solvothermal conditions by reacting Ln2O3, Sb, and S in en at 140 degrees C. These compounds were classified as two types according to the molecular structures. The crystal structure of type I (Ia and Ib) consists of one-dimensional neutral [Ln(en)3(H2O)x(mu(3-x)-SbS(4))]infinity (x = 0 or 1) chains, in which SbS4(3-) anions act as tridentate or bidentate bridging ligands to interlink [Ln(en)3]3+ ions, while the crystal structure of type II (IIa, IIb, and IIc) contains isolated [Ln(en)4]3+ cations, tetrahedral SbS4(3-) anions, and free en molecules. A systematic investigation of the crystal structures of the five lanthanide compounds, as well as two reported compounds, clarifies the relationship between the molecular structure and the entity of the lanthanide(III) series, such as the stability of the lanthanide(III)-en complexes, the coordination number, and the ionic radii of the metals.  相似文献   

3.
Two new tetraazamacrocyclic ligands are designed with the aim of sensitizing the luminescence of Tb(III) and Eu(III) ions in water: L5 [1,4,7,10-tetrakis[N-(phenacyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane] and L6 [1,4,7,10-tetrakis[N-(4-phenylphenacyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane]. These ligands react with lanthanide trifluoromethanesulfonates to yield stable 1:1 complexes in water (log K = 12.89 +/- 0.15 for EuL5). X-ray diffraction on [Tb(L5)(H(2)O)](CF(3)SO(3))(3) (P1 macro, a = 13.308(3) A, b = 14.338(3) A, c = 16.130(3) A, alpha = 101.37(3) degrees, beta = 96.16(3) degrees, gamma = 98.60(3) degrees ) shows the Tb(III) ion lying on a C(4) axis and being 9-coordinate, with one water molecule bound in its inner coordination sphere. The absolute quantum yields are determined in aerated water for the complexes formed with ions used in fluoroimmunoassays (Ln = Sm, Eu, Tb, and Dy). Large values are found for [Tb(H(2)O)(L5)](3+) and [Eu(H(2)O)(L6)](3+), in line with the molecular design of the receptors: 23.1% and 24.7%, respectively. The intense luminescence of these ions results from efficient intersystem crossing and L --> Ln energy transfer processes, as well as from a suitable shielding of the emitting ions from radiationless deactivation.  相似文献   

4.
The synthesis of ligand H3 based on a disymmetrically substituted terpyridine core functionalised by a carboxylic acid in the 6-position and a bis(carboxymethyl)aminomethyl function in the 6'-position is described. The coordination behaviour of this heptadentate (4N/3O) ligand with lanthanide cations (Ln=Eu, Gd and Tb) was studied in solution showing the formation of complexes with [Ln] stoichiometry. Complexes with general formula [Ln(H2O)2] were isolated from neutral water solutions containing equimolar amounts of cations and ligands, and the complexes were characterized in the solid state (elemental analysis, IR) and in solution (mass spectrometry). The photo-physical properties of the luminescent complexes of Eu and Tb were studied in water solution by means of absorption, steady state and time-resolved emission spectroscopies. Evolution of the luminescence lifetimes of the Eu and Tb complexes in H2O and D2O reveals the presence of two water molecules coordinated in the first coordination sphere of the cations. Despite this important hydration number, the overall luminescence quantum yields of the complexes remained elevated, especially in the case of Tb (Phi=22.0 and 6.5% respectively for Tb and Eu). Upon crystallisation the Gd complex formed dimeric species in which two gadolinium atoms are each heptacoordinated by one ligand, the coordination sphere being completed by a single water molecule and a bridging carboxylate function, pointing to different behaviours in the solid and liquid states.  相似文献   

5.
The model-free approach has been extended with the derivation of a novel three-nuclei crystal-field independent method for investigating isostructurality in nonaxial (i.e., rhombic) complexes along the lanthanide series. Application of this technique to the heterotrimetallic sandwich complexes [LnLu2(TACI-3H)2(H2O)6]3+, which possess a single C2v-symmetrical paramagnetic center, unambiguously evidences isostructurality for Ln = Pr-Yb, while the variation of the second-rank crystal-field parameters and along the series prevents reliable structural analyses with the classical one-nucleus equation. Extension toward polymetallic magnetically noncoupled rhombic lanthanide complexes in [Ln2Lu(TACI-3H)2(H2O)6]3+ (two paramagnetic centers with Cs microsymmetry) and [Ln3(TACI-3H)2(H2O)6]3+ (three paramagnetic centers with C2v microsymmetry) requires only minor modifications of the original three-nuclei equation. Isostructurality characterizes [Ln2Lu(TACI-3H)2(H2O)6]3+ (Ln = Pr-Yb), while [Ln3(TACI-3H)2(H2O)6]3+ exhibit a structural change between Eu and Tb which results from the concomitant contraction of the three metallic centers. Particular attention has been focused on (i) the stepwise increase of contact (i.e., through-bond) and pseudocontact (i.e., through-space) contributions when the number of paramagnetic centers increases, (ii) the assignment of 13C resonances in the strongly paramagnetic complexes [Ln3(TACI-3H)2(H2O)6]3+ (Ln = Tb-Yb) for which reliable T1 measurements and [1H-13C] correlation spectra are not accessible, and (iii) the combination of crystal-field dependent and independent methods for analyzing the paramagnetic NMR spectra of axial and nonaxial lanthanide complexes.  相似文献   

6.
The reaction of Ln(NO3)3.aq with K3[Cr(CN)6] and 2,2'-bipyridine (bpy) in a water/ethanol solution led to two families of complexes: 4 one-dimensional (1D) complexes of the formula trans-[Cr(CN)4(mu-CN)2Ln(H2O)3(bpy)2]n.4nH2O.3.5nbpy (Ln3+ = La, Ce, Pr, and Nd) and 10 1D complexes of the formula trans-[Cr(CN)4(mu-CN)2Ln(H2O)4(bpy)]n.3.5nH2O.1.5nbpy (Ln3+ = Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu). The structures for the fourteen complexes [LaCr]n (1), [CeCr]n (2), [PrCr]n (3), [NdCr]n (4), [NdCr]n (4'), [SmCr]n (5), [EuCr]n (6), [TbCr]n (7), [DyCr]n (8), [HoCr]n (9), [ErCr]n (10), [TmCr]n (11), [YbCr]n (12), and [LuCr]n (13) have been solved. Complexes 1-4 crystallize in the orthorhombic space group Pbam and are isomorphous; complexes 4'-13 crystallize in the triclinic space group PI and are isomorphous. The X-ray structural characterization of complexes 1-4 shows the presence of a discrete decameric water cluster built around a cyclic hexameric core stabilized by the solid-state structure, which represents another new mode of association of water molecules. The Ln3+-Cr3+ magnetic interaction is negligible in 6 and 12, antiferromagnetic in 2, 4', 7, 8, 9, 10, and 11, and unresolved for 3. The complex 5 is a ferrimagnet because its magnetic studies suggest the onset of a very weak ferromagnetic three-dimensional ordering.  相似文献   

7.
The syntheses of a new cyclen-based ligand L(2) containing four N-[2-(2-hydroxyethoxy)ethyl]acetamide pendant arms and of its lanthanide(III) complexes [LnL(2)(H(2)O)]Cl(3) (Ln = La, Eu, Tb, Yb, or Lu) are reported, together with a comparison with some Ln(III) complexes of a previously reported analogue L(1) in which two opposite amide arms have been replaced by coordinating pyridyl units. The structure and dynamics of the La(III), Lu(III), and Yb(III) complexes in solution were studied by using multinuclear NMR investigations and density functional theory calculations. Luminescence lifetime measurements in H(2)O and D(2)O solutions of the [Ln(L(2))(H(2)O)](3+) complexes (Ln = Eu or Tb) were used to investigate the number of H(2)O molecules coordinated to the metal ion, pointing to the presence of an inner-sphere H(2)O molecule in a buffered aqueous solution. Fluoride binding to the latter complexes was investigated using a combination of absorption spectroscopy and steady-state and time-resolved luminescence spectroscopy, pointing to a surprisingly weak interaction in the case of L(2) (log K = 1.4 ± 0.1). In contrast to the results in solution, the X-ray crystal structure of the lanthanide complex showed the ninth coordination position occupied by a chloride anion. In the case of L(1), the X-ray structure of the [(EuL(1))(2)F] complex features a bridging fluoride donor with an uncommon linear Eu-F-Eu entity connecting two almost identical [Eu(L(1))](3+) units. Encapsulation of the F(-) anion within the two complexes is assisted by π-π stacking between the pyridyl rings of two complexes and C-H···F hydrogen-bonding interactions involving the anion and the pyridyl units.  相似文献   

8.
Ligand L, based on two do3a moieties linked by the methylene groups of 6,6'-dimethyl-2,2'-bipyridine, was synthesized and characterized. The addition of Ln salts to an aqueous solution of L (0.01?M Tris-HCl, pH?7.4) led to the successive formation of [LnL] and [Ln(2)L] complexes, as evidenced by UV/Vis and fluorescence titration experiments. Homodinuclear [Ln(2)L] complexes (Ln = Eu, Gd, Tb, Yb, and Lu) were prepared and characterized. The (1)H and (13)C?NMR spectra of the Lu and Yb complexes in D(2)O solution (pD = 7.0) showed C(1) symmetry of these species in solution, pointing to two different chemical environments for the two lanthanide cations. The analysis of the chemical shifts of the Yb complex indicated that the two coordination sites present square antiprismatic (SAP) coordination environments around the metal ions. The spectroscopic properties of the [Tb(2)L] complex upon ligand excitation revealed conventional behavior with τ(H2O) = 2.05(1)?ms and ?(H2O) = 51%, except for the calculation of the hydration number obtained from the luminescent lifetimes in H(2)O and D(2)O, which pointed to a non-integer value of 0.6 water molecules per Tb(III) ion. In contrast, the Eu complex revealed surprising features such as: 1)?the presence of two and up to five components in the (5)D(0)→(7)F(0) and (5)D(0)→(7)F(1) emission bands, respectively; 2)?marked differences between the normalized spectra obtained in H(2)O and D(2)O solutions; and 3)?unconventional temporal evolution of the luminescence intensity at certain wavelengths, the intensity profile first displaying a rising step before the occurrence of the expected decay. Additional spectroscopic experiments performed on [Gd(2-x)Eu(x)L] complexes (x = 0.1 and 1.9) confirmed the presence of two distinct Eu sites with hydration numbers of 0 (site I) and 2 (site II), and showed that the unconventional temporal evolution of the emission intensity is the result of an unprecedented intramolecular Eu-to-Eu energy-transfer process. A mathematical model was developed to interpret the experimental data, leading to energy-transfer rates of 0.98?ms(-1) for the transfer from the site with q=0 to that with q=2 and vice versa. Hartree-Fock (HF) and density functional theory (DFT) calculations performed at the B3LYP level were used to investigate the conformation of the complex in solution, and to estimate the intermetallic distance, which provided F?rster radii (R(0)) values of 8.1?? for the energy transfer from site I to site II, and 6.8?? for the reverse energy transfer. These results represent the first evidence of an intramolecular energy-transfer equilibrium between two identical lanthanide cations within a discrete molecular complex in solution.  相似文献   

9.
A series of lanthanide adducts with different amounts of 1,10-phenanthroline, chloride ions, and water molecules in the inner and outer coordination spheres are investigated with the aim of relating the chemical bonding patternin the crystals to the luminescence properties of the Eu ion: [LnCl1Phen2(H2O)3]Cl2(H2O) (Ln ) Eu, 1Eu; Gd, 1Gd;Tb, 1Tb), [EuCl2Phen2(H2O)2]Cl1(H2O) (2), and [EuCl2Phen1(H2O)4]Cl1(H2O) (3). The influence of inner- versus outersphere ligands on the Ln-X bond lengths and angles in the structure is examined. A detailed topological analysis of the electron density function derived from the X-ray diffraction data for 1Gd is performed within the frame of the"atoms in molecule" theory for the first time for a lanthanide complex. The chemical bonding pattern is interpreted in terms of net atomic charges, bond energies, and electron transfers from the ligands to the metal ion. A noteworthy finding is that the energy of extended noncovalent interactions occurring in the second coordination sphere (H-bonding and pi-stacking interactions) is comparable to that of Ln-ligand bonds. The luminescence properties of the three Eu adducts are interpreted with the results of electron density distribution function topology. An intraligand charge transfer state is identified, and its contribution in the ligand-to-europium energy transfer process is analyzed.The outcome of this study is that specific interionic interactions which are usually not considered in theoretical calculations or in the interpretation of luminescence properties play an important role in the sensitization of the Eu luminescence.  相似文献   

10.
在乙醇体系中,由主配体4-[(1,3-二氧代丁基)氨基]苯甲酸(H2L,C11H11NO4)、稀土硝酸盐及辅助配体邻菲啰啉(phen)反应合成了两个系列8个配合物[Ln2(L)3(H2O)4]n(Ln=Sm(1),Eu(2),Tb(3),Dy(4));[Ln2(NO3)2(L)2(phen)2]n(Ln=Sm(5),Eu(6),Tb(7),Dy(8))。用元素分析、红外光谱、摩尔电导、热重分析进行表征,确定了产物的化学组成,推断了相应的结构。测定了室温时固体产物的激发和发射光谱,结果表明:由主辅配体共同配位的三元配合物的发光强度好于无辅助配体参与的二元配合物。测定了三元配合物的荧光寿命,其中铕和铽配合物显示较长的荧光寿命。  相似文献   

11.
A new ligand, LC, bis-[(6'-carboxy-2,2'-bipyridine-6-yl)]phenylphosphine oxide, in which the tridentate 6-carboxy-2,2'-bipyridyl arms are directly linked to a phenylphosphine oxide fragment, has been synthesized. The corresponding [Ln.LC]Cl.xH2O complexes (Ln = Eu, x = 4, and Tb, x = 3) were isolated from solutions containing equimolar amounts of LC and hydrated LnCl3 salts and characterized by elemental analysis, mass spectrometry, and infrared spectroscopy. The interactions of the Eu complex with various anions (AMP(2-), ADP3-, ATP,4- HPO4(2-), and NO3-) were studied by titration experiments, using UV-vis, luminescence spectroscopy, and excited-state lifetime measurements. The results are in keeping with strong interactions with the ADP3-, ATP4-, and phosphate anions in TRIS/HCl buffer (0.01 M, pH = 7.0), as revealed by the determination of the conditional stepwise association constants. These values are higher than the one determined for ligand LB, bis[(6'-carboxy-2,2'-bipyridine-6-methyl-yl)]-n-butylamine (Delta log K approximately 1-2). The interaction of complexes [Ln.LB]+ and [Ln.LC]+ with nitrate, monohydrogenophosphate, methyl phosphate (MeP2-), methyldiphosphate (MeDP3-), and methyltriphosphate (MeTP4-) anions was investigated by means of quantum mechanical (QM) calculations. The results, combined with data on the photophysical impact of the sequential competitive binding of anions to the Eu complexes in water, suggest that LB is too flexible to ensure a good coordination pocket, while the molecular structure of ligand LC stabilizes both the formation of the lanthanide complexes and its adducts with ATP.  相似文献   

12.
Mononuclear complexes [Re(bpym)(CO)(3)Cl] and [Pt(bpym)(CC-C(6)H(4)CF(3))(2)] (bpym = 2,2'-bipyrimidine), in which one of the bipyrimidine sites is vacant, have been used as "complex ligands" to prepare heterodinuclear d-f complexes in which a lanthanide tris(1,3-diketonate) unit is attached to the secondary bipyrimidine site to evaluate the ability of d-block chromophores to act as antennae for causing sensitized near-infrared (NIR) luminescence from adjacent lanthanide(III) centers. The two sets of complexes so prepared are [Re(CO)(3)Cl(mu-bpym)Ln(fod)(3)] (abbreviated as Re-Ln; where Ln = Yb, Nd, Er) and [(F(3)C-C(6)H(4)-CC)(2)Pt(mu-bpym)Ln(hfac)(3)] (abbreviated as Pt-Ln; where Ln = Nd, Gd). Members of both series have been structurally characterized; the metal-metal separation across the bipyrimidine bridge is approximately 6.3 A in each case. In these complexes, the (3)MLCT (MLCT = metal to ligand charge-transfer) luminescences of the mononuclear [Re(bpym)(CO)(3)Cl] and [Pt(bpym)(CC-C(6)H(4)CF(3))(2)] complexes are quenched by energy transfer to those lanthanides (Ln = Yb, Nd, Er) that have low-lying f-f states capable of NIR luminescence; as a result, sensitized NIR luminescence is seen from the lanthanide center following excitation of the d-block unit. In the solid state, quenching of the luminescence from the d-block chromophore is complete, indicating efficient d --> f energy transfer, as a result of the short metal-metal separation across the bipyrimidine bridge. In a CH(2)Cl(2) solution, partial dissociation of the dinuclear complexes into the mononuclear units occurs, with the result that some (3)MLCT luminescence is observed from mononuclear [Re(bpym)(CO)(3)Cl] or [Pt(bpym)(CC-C(6)H(4)CF(3))(2)] present in the equilibrium mixture. Solution UV-vis and luminescence titrations, carried out by the addition of portions of Ln(fod)(3)(H(2)O)(2) or Ln(hfac)(3)(H(2)O)(2) to the d-block complex ligands, indicate that binding of the lanthanide tris(1,3-diketonate) unit at the secondary bipyrimidine site to give the d-f dinuclear complexes occurs with an association constant of ca. 10(5) M(-)(1).  相似文献   

13.
在乙腈和二氯甲烷混合溶液中合成了三价稀土元素(La, Nd, Eu, Dy, Er, Yb)硫氰酸盐与辛二酰双(4'-苯并-15-冠-5)的六个新配合物。并在氩气氛中, 以四氢呋喃为溶剂, 锂-萘为还原剂, 制得了二价铕硫氰酸盐与辛二酰双(4'-苯并-15-冠-5)的固体配合物。通过元素分析、红外光谱、差热热重分析、荧光光谱、穆斯堡尔谱、电子自旋共振谱、还原性实验等研究了双冠醚与稀土离子的配位作用, 并讨论了三价和二价稀土配合物在物理化学性质上的差别。  相似文献   

14.
The unsymmetrical tridentate benzimidazole-pyridine-carboxamide units in ligands L1-L4 react with trivalent lanthanides, Ln(III), to give the nine-co-ordinate triple-helical complexes [Ln(Li)3]3+ (i = 1-4) existing as mixtures of C3-symmetrical facial and C1-symmetrical meridional isomers. Although the beta13 formation constants are 3-4 orders of magnitude smaller for these complexes than those found for the D3-symmetrical analogues [Ln(Li)3]3+ (i = 5-6) with symmetrical ligands, their formation at the millimolar scale is quantitative and the emission quantum yield of [Eu(L2)3]3+ is significantly larger. The fac-[Ln(Li)3]3+ <--> mer-[Ln(Li)3]3+ (i = 1-4) isomerisation process in acetonitrile is slow enough for Ln = Lu(III) to be quantified by 1H NMR below room temperature. The separation of enthalpic and entropic contributions shows that the distribution of the facial and meridional isomers can be tuned by the judicious peripheral substitution of the ligands affecting the interstrand interactions. Molecular mechanics (MM) calculations suggest that one supplementary interstrand pi-stacking interaction stabilises the meridional isomers, while the facial isomers benefit from more favourable electrostatic contributions. As a result of the mixture of facial and meridional isomers in solution, we were unable to obtain single crystals of 1:3 complexes, but the X-ray crystal structures of their nine-co-ordinate precursors [Eu(L1)2(CF3SO3)2(H2O)](CF3SO3)(C3H5N)2(H2O) (6, C45H54EuF9N10O13S3, monoclinic, P2(1)/c, Z = 4) and [Eu(L4)2(CF3SO3)2(H2O)](CF3SO3)(C4H4O)(1.5) (7, C51H66EuF9N8O(15.5)S3, triclinic, P1, Z = 2) provide crucial structural information on the binding mode of the unsymmetrical tridentate ligands.  相似文献   

15.
Five novel lanthanide complexes with the formulas [Nd(bta)(H2O)2.4.35H2O]n(1), [Sm(bta)(H2O)2.4.5H2O]n (2), [Eu(bta)(H2O).1.48H2O]n (3), [Tb(bta)(H2O).1.31H2O]n (4), and [Yb(bta)(H2O).H2O]n (5) (H3bta = 1,3,5-benzenetriacetic acid) have been prepared by using the corresponding lanthanide salt and H3bta. The results of an X-ray crystallographic analysis revealed that all the complexes have three-dimensional channel-like structures, in which the bta3- ligands adopt different coordination modes: monodentate and mu2-eta2:eta1-bridging coordination modes in 1, 2, and 5 and mu2-eta1:eta1-bridging and mu2-eta2:eta1-bridging coordination modes in 3 and 4, respectively. Complexes 1 and 2, as well as 3 and 4, are isostructural, respectively, in which all the Ln(III) (Ln = Nd, Sm, Eu, and Tb) atoms are nine-coordinated, while the Yb(III) atoms in complex 5 are eight-coordinated. Both complexes 3 and 4 showed strong luminescence upon excitation, and their luminescence decay curves fit well with single exponential decays of which the lifetime is 0.45 ms for 3 and 1.0 ms for 4. The magnetic properties of the complexes were investigated in the temperature range of 1.8-300 K.  相似文献   

16.
The reaction of Ln(NO3)3.aq with K3[Fe(CN)6] or K3[Co(CN)6] in N,N'-dimethylformamide (DMF) led to 25 heterodinuclear [Ln(DMF)4(H2O)3(mu-CN)Fe(CN)5].nH2O and [Ln(DMF)4(H2O)3(mu-CN)Co(CN)5].nH2O complexes (with Ln = all the lanthanide(III) ions, except promethium and lutetium). Five complexes (Pr(3+)-Fe3+), (Tm(3+)-Fe3+), (Ce(3+)-Co3+), (Sm(3+)-Co3+), and (Yb(3+)-Co3+) have been structurally characterized; they crystallize in the equivalent monoclinic space groups P21/c or P21/n. Structural studies of these two families show that they are isomorphous. This relationship in conjunction with the diamagnetism of the Co3+ allows an approximation to the nature of coupling between the iron(III) and the lanthanide(III) ions in the [Ln(DMF)4(H2O)3(mu-CN)Fe(CN)5].nH2O complexes. The Ln(3+)-Fe3+ interaction is antiferromagnetic for Ln = Ce, Nd, Gd, and Dy and ferromagnetic for Ln = Tb, Ho, and Tm. For Ln = Pr, Eu, Er, Sm, and Yb, there is no sign of any significant interaction. The isotropic nature of Gd3+ helps to evaluate the value of the exchange interaction.  相似文献   

17.
Song X  Zhou X  Liu W  Dou W  Ma J  Tang X  Zheng J 《Inorganic chemistry》2008,47(24):11501-11513
To explore the relationships between the structures of ligands and their complexes, we have synthesized and characterized a series of lanthanide complexes with two structurally related ligands, 1,1,1,1-tetrakis{[(2'-(2-benzylaminoformyl))phenoxyl]methyl}methane (L(I)) and 1,1,1,1-tetrakis{[(2'-(2-picolyaminoformyl))phenoxyl]methyl}methane (L(II)). A series of zero- to three-dimensional lanthanide coordination complexes have been obtained by changing the substituents on the Pentaerythritol. Our results revealed that, complexes of the L(I) ligand, {Ln(4)L(I)(3)(NO(3))(12).nC(4)H(10)O}(infinity) (Ln = Nd, Eu, Tb, Er, n = 3 or 6)] show the binodal 3,4-connected three-dimensional interpenetration coordination polymers with topology of a (8(3))(4)(8(6))(3) notation. Compared to L(I), complexes of L(II) present a cage-like homodinuclear [Ln(2)L(II)(2)(NO(3))(6).2H(2)O].nH(2)O (Ln = Nd, Tb, Dy, n = 0 or 1) or a helical one-dimensional coordination {[ErL(II)(NO(3))(3).H(2)O].H(2)O}(infinity) polymer. The luminescence properties of the resulting complexes formed with ions used in fluoroimmunoassays (Ln = Eu, Tb) are also studied in detail. It is noteworthy that subtle variation of the terminal group from benzene to pyridine not only sensibly affects the overall molecular structures but also the luminescence properties as well.  相似文献   

18.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

19.
The emission properties, including luminescence lifetimes, of the lanthanide complexes Ln(Tf(2)N)(3) (Tf(2)N = bis(trifluoromethanesulfonyl)amide); Ln(3+) = Eu(3+), Tm(3+), Dy(3+), Sm(3+), Pr(3+), Nd(3+), Er(3+)) in the ionic liquid bmpyr Tf(2)N (bmpyr = 1-n-butyl-1-methylpyrrolidinium) are presented. The luminescence quantum efficiencies, η, and radiative lifetimes, τ(R), are determined for Eu(3+)((5)D(0)), Tm(3+)((1)D(2)), Dy(3+)((4)F(9/2)), Sm(3+)((4)G(5/2)), and Pr(3+)((3)P(0)) emission. The luminescence lifetimes in these systems are remarkably long compared to values typically reported for Ln(3+) complexes in solution, reflecting weak vibrational quenching. The 1.5 μm emission corresponding to the Er(3+) ((4)I(13/2)→(4)I(15/2)) transition, for example, exhibits a lifetime of 77 μs. The multiphonon relaxation rate constants are determined for 10 different Ln(3+) emitting states, and the trend in multiphonon relaxation is analyzed in terms of the energy gap law. The energy gap law does describe the general trend in multiphonon relaxation, but deviations from the trend are much larger than those normally observed for crystal systems. The parameters determined from the energy gap law analysis are consistent with those reported for crystalline hosts. Because Ln(3+) emission is known to be particularly sensitive to quenching by water in bmpyr Tf(2)N, the binding properties of water to Eu(3+) in solutions of Eu(Tf(2)N)(3) in bmpyr Tf(2)N have been quantified. It is observed that water introduced into these systems binds quantitatively to Ln(3+). It is demonstrated that Eu(Tf(2)N)(3) can be used as a reasonable internal standard, both for monitoring the dryness of the solutions and for estimating the quantum efficiencies and radiative lifetimes for visible-emitting [Ln(Tf(2)N)(x)](3-x) complexes in bmpyr Tf(2)N.  相似文献   

20.
We have isolated the 1:1 Ln:[alpha-2-P2W17O61]10- complexes for a series of lanthanides. The single-crystal X-ray structure of the Eu3+ analogue reveals two identical [Eu(H2O)3(alpha-2-P2W17O61)]7- moieties connected through two Eu-O-W bonds, one from each polyoxometalate unit. An inversion center relates the two polyoxometalate units. The Eu(III) ion is substituted for a [WO]4+ unit in the "cap" region of the tungsten-oxygen framework of the parent Wells-Dawson ion. The point group of the dimeric molecule is Ci. The extended structure is composed of the [Eu(H2O)3(alpha-2-P2W17O61)]214- anions linked together by surface-bound potassium cations. The space group is P, a = 12.7214(5) A, b = 14.7402(7) A, c = 22.6724(9) A, alpha = 71.550(3), beta = 84.019(3)degrees, gamma = 74.383(3), V = 3883.2(3) A3, Z = 1. The solution studies, including 183W NMR spectroscopy and luminescence lifetime measurements, show that the molecules dissociate in solution to form monomeric [Ln(H2O)4(alpha-2-P2W17O61)]7- species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号