首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
采用磁控溅射技术在聚二甲基硅氧烷(PDMS)上制备金属褶皱结构,有效地解决了柔性结构发生形变时电阻值发生较大改变甚至失效的问题。研究了不同溅射时间对金属褶皱结构周期及高度的影响,并对金属褶皱结构的电学性能进行测试。利用原子力显微镜分析表征柔性衬底上金属褶皱结构的表面形貌,利用数字万用表进行样品表面电阻值的测量。测试结果表明:随着溅射时间的增加,金属褶皱结构的周期和高度都呈增大趋势,电阻增长率变得缓慢,对信号的响应程度也越来越小。  相似文献   

2.
磁控溅射法在柔性衬底上制备ZnO:Al透明导电薄膜   总被引:3,自引:0,他引:3  
用射频磁控溅射方法在有机柔性衬底上制备出好的附着性,低电阻率、高透射率ZnO:Al的透明导电膜,研究了薄膜的结构、电学和光学特性。  相似文献   

3.
设计了一种新型的脑电图干电极,主要用于采集脑电信号以进行基于脑电图的警觉度分析,替代传统的湿电极.采用柔性衬底微电子机械系统(MEMS)加工技术,在柔性衬底上制备出具有化学稳定性与生物相容性的微针状干电极阵列.通过铜牺牲层实现干电极微针的悬臂梁结构,利用聚二甲基硅氧烷(PDMS)剥离层实现器件从玻璃基底的完全释放,并经平面电极的多层组装实现了立体电极阵列.实验中干电极以聚酰亚胺作为柔性衬底,其针端及导线部分材料为镍,针端部分表面镀金.采用Neuroscan的脑电信号采集放大器对干电极性能进行了测试,测得阻抗约为10 kΩ,其时域和频域信号与传统湿电极基本一致.所制备的干电极成品率高、尺寸小、屏蔽佳、装配简单、可靠性好、机械强度大,符合快速、无痛的脑电信号采集要求.  相似文献   

4.
磁控溅射法在柔性衬底上制备ZnO∶Al透明导电薄膜   总被引:2,自引:0,他引:2  
用射频磁控溅射方法在有机柔性衬底上制备出好的附着性、低电阻率、高透射率ZnO∶Al的透明导电膜,研究了薄膜的结构、电学和光学特性.  相似文献   

5.
通过高温工艺或退火工艺均能在合适的条件下获得性能良好的ITO透明导电薄膜,但通过扫描电镜(SEM) 发现这两种制备方式所得样品具有很大的表面形貌差异.在薄膜电池前电极的制备过程中为了增强其陷光作用应采用直接制备的方法,而为了增强Al背电极的光反射作用,背部的透明导电膜应采用在合适温度下的退火工艺.  相似文献   

6.
用磁控溅射法在柔性衬底上制备ZnO透明导电膜   总被引:1,自引:0,他引:1  
本文介绍了磁控溅射的原理以及磁控溅射法在柔性衬底上制备ZnO透明导电膜的实验方法.  相似文献   

7.
随着可穿戴电子器件的发展,开发具有柔性结构的电极受到储能领域研究人员的高度重视.研究认为,具有高韧性的柔性复合电极在小型可穿戴电子器件储能设备中有广阔的发展前景,尤其是在商用小型锂离子电池和超级电容器领域,柔性电极更应具有柔韧性和稳定性优势.基于此,笔者从柔性电极的构建出发,综述了最近柔性电极制备方法的研究进展,并展望了柔性电极的未来发展趋势.  相似文献   

8.
柔性有机电致发光器件(OLED)的制作是有机光电子领域内最具挑战性的课题之一.本文通过国内外近五年内柔性OLED器件衬底材料领域的最新研究成果,总结了柔性透明导电衬底材料的种类和制备技术,分析了各自的优缺点并提出了其未来的发展前景与趋势.  相似文献   

9.
徐祥福 《科技资讯》2011,(20):142-142,144
采用直流脉冲磁控溅射方法在非晶硅薄膜上制备AZO背反电极,比较不同制备参数对透过率及效率的影响。采用优化参数,得到效率增加了0.8%的非晶硅薄膜电池。根据实验结果,证明背反电极增反机理不是薄膜干涉增强原理,而是因为界面共振吸收减少,而导致光的吸收增强的机理。  相似文献   

10.
偏压磁控溅射法在柔性衬底上制备ZnO:A1透明导电膜   总被引:1,自引:0,他引:1  
用射频偏压磁控溅射法 ,在水冷透明聚脂胶片上制备出了附着力强的ZnO :Al (AluminiumdopedZincOxide ,AZO)透明导电膜 ,膜的最小电阻率为 1.11× 10 -3 Ωcm ,薄膜的透过率高于 85 % .薄膜为多晶纤锌矿结构 ,垂直于衬底的C轴具有 [0 0 2 ]方向的择优取向 .重点探讨了薄膜的结构、光电性质与衬底所加负偏压的关系 .  相似文献   

11.
针对高温硒化过程中铜锌锡硫硒(CZTSSe)太阳能电池背界面不稳定问题,提出在柔性Mo衬底上蒸镀MoO3薄层,阻隔CZTSSe吸收层与Mo的直接接触,抑制背界面处CZTSSe吸收层与Mo发生分解反应.材料表征及性能测试表明,MoO3修饰能促进背界面处CZTSSe吸收层的生长,提高CZTSSe吸收层的结晶质量,实现了CZTSSe吸收层由双层结构向“三明治”结构的转变.实验证明,加入10 nm的MoO3薄层,开路电压与短路电流有大幅提升,能得到最佳的器件效率,效率从6.62%提升到7.41%.  相似文献   

12.
High performance Pt counter electrode is prepared by using vacuum thermal decomposition at a relatively low (120℃) temperature on a flexible polyethylene naphthalate substrate coated with indium-doped tin oxide for use in flexible dye-sensitized solar cells.The obtained Pt counter electrode shows a good chemical stability,high light transmittance,and high electrocatalytic activity for the I3-/I-redox reaction.The energy conversion efficiency of a flexible dye-sensitized solar cell based on the prepared Pt counter electrode and a TiO 2 /Ti photoanode reaches 5.14% under a simulated solar light irradiation with intensity of 100 mW cm-2.  相似文献   

13.
铝浆作为晶体硅电池背电极材料,主要由导电相、无机粘结相、添加剂、载体组成。这些组成部分都对铝浆的性能起到至关重要的影响。对各种组成成分的作用机理以及铝背场形成使用机理进行了综述。  相似文献   

14.
采用强碱水热法合成二氧化钛纳米管,并与二氧化钛纳米颗粒混合作为染料敏化太阳能电池电极材料.当纳米管与纳米颗粒按照1:1摩尔比混合时,经过500℃烧结1h后,转化成锐钛矿晶型;平均孔体积0.30 cm3/g,平均孔径11.42 nm,比表面积为105.58 m2/g;电极对染料的吸附量达到4.85×10-8mol/cm2;电池的短路光电流密度8.70 mA/cm2,开路光电压0.76 V,填充因子0.60,光电转化效率3.96%.  相似文献   

15.
柔性透明导电薄膜的研究现状、应用及趋势   总被引:1,自引:0,他引:1  
综述了目前制备柔性透明导电膜的主要技术及其优缺点,柔性透明导电薄膜是在柔性衬底上沉积的一种透明导电膜,制备这种膜首要的问题是选择合适的衬底材料,其次就是选择合适的制备技术,降低TCO膜的电阻率,提高可见光区的透射率,使薄膜性能稳定,重复性好,成本低,达到实用要求.文中阐述了当前该领域的研究现状,并讨论了工业应用对柔性透明导电膜的性能要求及其未来发展趋势。  相似文献   

16.
在X射线荧光(XRF)分析中应用基于基本参数法的FP—Multi软件,采用C固定道和Ti、Al、Si扫描道,以99.999%石墨及纯Al、Ti、SiO2四个块样做标样,对玻璃基材上含有C元素的TiO2薄膜厚度及成分进行了测试分析。薄膜厚度的测定结果还与用nkd干涉仪、扫描电镜断面分析等方法的测试结果做对比。证明X射线荧光光谱法测定玻璃基材上C+TiO2薄膜厚度及成分是可行的。  相似文献   

17.
文章研究了用来作为多晶硅薄膜太阳电池衬底的陶瓷硅材料的制备方法及其结构。对不同烧结条件制备的样品进行了XRD和SEM的测试和分析。测试分析的结果表明:形成了表面平整的陶瓷硅材料,用此方法可以获得性能良好的硅太阳电池衬底材料。  相似文献   

18.
利用微电子加工工艺在柔性PET衬底上制备透明氧化铪基阻变存储器.采用氧化铪/氧化锌双介质层将存储器转变电流降低至μA量级,从而实现柔性透明存储器的低功耗(μW量级).研究表明,双介质层阻变存储器不仅具有稳定、可重复的阻变存储特性,还具有一定抗弯折性能和较高的热稳定性.进一步研究表明,由于氧化铪/氧化锌界面势垒的存在,抑制了介质中电荷的输运,从而达到器件低电流工作的效果.  相似文献   

19.
ZnO是一种多功能材料,目前处于世界范围的研究热潮中。为了拓展和改善ZnO的应用,采用中频等离子体化学气相沉积法(MF-PCVD)制备了ZnO薄膜,并研究了衬底温度对晶型和成膜速率的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号