首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— 40Ar‐39Ar analyses of a total of 26 samples from eight shock‐darkened impact melt breccias of H‐chondrite affinity (Gao‐Guenie, LAP 02240, LAP 03922, LAP 031125, LAP 031173, LAP 031308, NWA 2058, and Ourique) are reported. These appear to record impacts ranging in time from 303 ± 56 Ma (Gao‐Guenie) to 4360 ± 120 Ma (Ourique) ago. Three record impacts 300–400 Ma ago, while two others record impacts 3900–4000 Ma ago. Combining these with other impact ages from H chondrites in the literature, it appears that H chondrites record impacts in the first 100 Ma of solar system history, during the era of the “lunar cataclysm” and shortly thereafter (3500–4000 Ma ago), one or more impacts ?300 Ma ago, and perhaps an impact ?500 Ma ago (near the time of the L chondrite parent body disruption). Records of impacts on the H chondrite parent body are rare or absent between the era of planetary accretion and the “lunar cataclysm” (4400‐4050 Ma), during the long stretch between heavy bombardment and recent breakup events (3500‐1000 Ma), or at the time of final breakup into meteorite‐sized bodies (<50 Ma).  相似文献   

2.
Abstract— Eucrite meteorites are igneous rocks that derived from a large asteroid, probably 4 Vesta. Past studies have shown that after most eucrites formed, they underwent metamorphism in temperatures up to ≥800°C. Much later, many were brecciated and heated by large impacts into the parent body surface. The less common basaltic, unbrecciated eucrites also formed near the surface but, presumably, escaped later brecciation, while the cumulate eucrites formed at depths where metamorphism may have persisted for a considerable period. To further understand the complex HED parent body thermal history, we determined new 39Ar‐40Ar ages for 9 eucrites classified as basaltic but unbrecciated, 6 eucrites classified as cumulate, and several basaltic‐brecciated eucrites. Precise Ar‐Ar ages of 2 cumulate eucrites (Moama and EET 87520) and 4 unbrecciated eucrites give a tight cluster at 4.48 ± 0.02 Gyr (not including any uncertainties in the flux monitor age). Ar‐Ar ages of 6 additional unbrecciated eucrites are consistent with this age within their relatively larger age uncertainties. By contrast, available literature data on Pb‐Pb isochron ages of 4 cumulate eucrites and 1 unbrecciated eucrite vary over 4.4–4.515 Gyr, and 147Sm‐143Nd isochron ages of 4 cumulate and 3 unbrecciated eucrites vary over 4.41–4.55 Gyr. Similar Ar‐Ar ages for cumulate and unbrecciated eucrites imply that cumulate eucrites do not have a younger formation age than basaltic eucrites, as was previously proposed. We suggest that these cumulate and unbrecciated eucrites resided at a depth where parent body temperatures were sufficiently high to cause the K‐Ar and some other chronometers to remain as open diffusion systems. From the strong clustering of Ar‐Ar ages at ?4.48 Gyr, we propose that these meteorites were excavated from depth in a single large impact event ?4.48 Gyr ago, which quickly cooled the samples and started the K‐Ar chronometer. A large (?460 km) crater postulated to exist on Vesta may be the source of these eucrites and of many smaller asteroids thought to be spectrally or physically associated with Vesta. Some Pb‐Pb and Sm‐Nd ages of cumulate and unbrecciated eucrites are consistent with the Ar‐Ar age of 4.48 Gyr, and the few older Pb‐Pb and Sm‐Nd ages may reflect an isotopic closure before the large cratering event. One cumulate eucrite gives an Ar‐Ar age of 4.25 Gyr; 3 additional cumulate eucrites give Ar‐Ar ages of 3.4–3.7 Gyr; and 2 unbrecciated eucrites give Ar‐Ar ages of ?3.55 Gyr. We attribute these younger ages to a later impact heating. Furthermore, the Ar‐Ar impact‐reset ages of several brecciated eucrites and eucritic clasts in howardites fall within the range of 3.5–4.1 Gyr. Among these, Piplia Kalan, the first eucrite to show evidence for extinct 26Al, was strongly impact heated ?3.5 Gyr ago. When these data are combined with eucrite Ar‐Ar ages in the literature, they confirm that several large impact heating events occurred on Vesta between ?4.1–3.4 Gyr ago. The onset of major impact heating may have occurred at similar times for both Vesta and the moon, but impact heating appears to have persisted for a somewhat later time on Vesta.  相似文献   

3.
Abstract— This study presents the first determinations of 39Ar‐40Ar ages of R chondrites for the purpose of understanding the thermal history of the R chondrite parent body. The 39Ar‐40Ar ages were determined on whole‐rock samples of four R chondrites: Carlisle Lakes, Rumuruti, Acfer 217, and Pecora Escarpment #91002 (PCA 91002). All samples are breccias except for Carlisle Lakes. The age spectra are complicated by recoil and diffusive loss to various extents. The peak 39Ar‐40Ar ages of the four chondrites are 4.35, ?4.47 ± 0.02, 4.30 ± 0.07 Ga, and 4.37 Ga, respectively. These ages are similar to Ar‐Ar ages of relatively unshocked ordinary chondrites (4.52–4.38 Ga) and are older than Ar‐Ar ages of most shocked ordinary chondrites («4.2 Ga). Because the meteorites with the oldest (Rumuruti, ?4.47 Ga) and the youngest (Acfer 217, ?4.30 Ga) ages are both breccias, these ages probably do not record slow cooling within an undisrupted asteroidal parent body. Instead, the process of breccia formation may have differentially reset the ages of the constituent material, or the differences in their age spectra may arise from mixtures of material that had different ages. Two end‐member type situations may be envisioned to explain the age range observed in the R chondrites. The first is if the impact(s) that reset the ages of Acfer 217 and Rumuruti was very early. In this case, the ?170 Ma maximum age difference between these meteorites may have been produced by much deeper burial of Acfer 217 than Rumuruti within an impact‐induced thick regolith layer, or within a rubble pile type parent body following parent body re‐assembly. The second, preferred scenario is if the impact that reset the age of Acfer 217 was much later than that which reset Rumuruti, then Acfer 217 may have cooled more rapidly within a much thinner regolith layer. In either scenario, the oldest age obtained here, from Rumuruti, provides evidence for relatively early (?4.47 Ga) impact events and breccia formation on the R chondrite parent body.  相似文献   

4.
Abstract— We performed high‐resolution 40Ar‐39Ar dating of mineral separates and whole‐rock samples from the desert meteorites Dhofar 300, Dhofar 007, and Northwest Africa (NWA) 011. The chronological information of all samples is dominated by plagioclase of varying grain size. The last total reset age of the eucrites Dhofar 300 and Dhofar 007 is 3.9 ± 0.1 Ga, coeval with the intense cratering period on the Moon. Some large plagioclase grains of Dhofar 007 possibly inherited Ar from a 4.5 Ga event characteristic for other cumulate eucrites. Due to disturbances of the age spectrum of NWA 011, only an estimate of 3.2–3.9 Ga can be given for its last total reset age. Secondary events causing partial 40Ar loss ≤3.4 Ga ago are indicated by all age spectra. Furthermore, Ar extractions from distinct low temperature phases define apparent isochrons for all samples. These isochron ages are chronologically irrelevant and most probably caused by desert alterations, in which radiogenic 40Ar and K from the meteorite and occasionally K induced by weathering are mixed, accompanied by incorporation of atmospheric Ar. Additional uptake of atmospheric Ar by the alteration phase(s) was observed during mineral separation (i.e., crushing and cleaning in ultrasonic baths). Consistent cosmic‐ray exposure ages were obtained from plagioclase and pyroxene exposure age spectra of Dhofar 300 (25 ± 1 Ma) and Dhofar 007 (13 ± 1 Ma) using the mineral's specific target element chemistry and corresponding 38Ar production rates.  相似文献   

5.
Ar‐Ar isochron ages of EL chondrites suggest closure of the K‐Ar system at 4.49 ± 0.01 Ga for EL5 and 6 chondrites, and 4.45 ± 0.01 Ga for EL3 MAC 88136. The high‐temperature release regimes contain a mixture of radiogenic 40Ar* and trapped primordial argon (solar or Q‐type) with 40Ar/36ArTR ~ 0 , which does not affect the 40Ar budget. The low‐temperature extractions show evidence of an excess 40Ar component. The 40Ar/36Ar is 180–270; it is defined by intercept values of isochron regression. Excess 40Ar is only detectable in petrologic types >4/5. These lost most of their primordial 36Ar from low‐temperature phases during metamorphism and retrapped excess 40Ar. The origin of this excess 40Ar component is probably related to metamorphic Ar mobilization, homogenization of primordial and in situ radiogenic Ar, and trapping of Ar by distinct low‐temperature phases. Ar‐Ar ages of EH chondrites are more variable and show clear evidence of a major impact‐induced partial resetting at about 2.2 Ga ago or alternatively, prolonged metamorphic decomposition of major K carrier phases. EH impact melt LAP 02225 displayed the highest Ar‐Ar isochron age of 4.53 ± 0.01 Ga. This age sets a limit of about 25–45 Ma for the age bias between the K‐Ar and U‐Pb decay systems.  相似文献   

6.
Abstract— The Monahans H‐chondrite is a regolith breccia containing light and dark phases and the first reported presence of small grains of halite. We made detailed noble gas analyses of each of these phases. The 39Ar‐40Ar age of Monahans light is 4.533 ± 0.006 Ma. Monahans dark and halite samples show greater amounts of diffusive loss of 40Ar and the maximum ages are 4.50 and 4.33 Ga, respectively. Monahans dark phase contains significant concentrations of He, Ne and Ar implanted by the solar wind when this material was extant in a parent body regolith. Monahans light contains no solar gases. From the cosmogenic 3He, 21Ne, and 38Ar in Monahans light we calculate a probable cosmic‐ray, space exposure age of 6.0 ± 0.5 Ma. Monahans dark contains twice as much cosmogenic 21Ne and 38Ar as does the light and indicates early near‐surface exposure of 13–18 Ma in a H‐chondrite regolith. The existence of fragile halite grains in H‐chondrites suggests that this regolith irradiation occurred very early. Large concentrations of 36Ar in the halite were produced during regolith exposure by neutron capture on 35Cl, followed by decay to 36Ar. The thermal neutron fluence seen by the halite was (2–4) × 1014 n/cm2. The thermal neutron flux during regolith exposure was ~0.4‐0.7 n/cm2/s. The Monahans neutron fluence is more than an order of magnitude less than that acquired during space exposure of several large meteorites and of lunar soils, but the neutron flux is lower by a factor of ≤5. Comparison of the 36Arn/21Necos ratio in Monahans halite and silicate with the theoretically calculated ratio as a function of shielding depth in an H‐chondrite regolith suggests that irradiation of Monahans dark occurred under low shielding in a regolith that may have been relatively shallow. Late addition of halite to the regolith can be ruled out. However, irradiation of halite and silicate for different times at different depths in an extensive regolith cannot be excluded.  相似文献   

7.
Abstract– Compared with ordinary chondrites, there is a relative paucity of chronological and other data to define the early thermal histories of enstatite parent bodies. In this study, we report 39Ar‐40Ar dating results for five EL chondrites: Khairpur, Pillistfer, Hvittis, Blithfield, and Forrest; five EH chondrites: Parsa, Saint Marks, Indarch, Bethune, and Reckling Peak 80259; three igneous‐textured enstatite meteorites that represent impact melts on enstatite chondrite parent bodies: Zaklodzie, Queen Alexandra Range 97348, and Queen Alexandra Range 97289; and three aubrites, Norton County, Bishopville, and Cumberland Falls Several Ar‐Ar age spectra show unusual 39Ar recoil effects, possibly the result of some of the K residing in unusual sulfide minerals, such as djerfisherite and rodderite, and other age spectra show 40Ar diffusion loss. Few additional Ar‐Ar ages for enstatite meteorites are available in the literature. When all available Ar‐Ar data on enstatite meteorites are considered, preferred ages of nine chondrites and one aubrite show a range of 4.50–4.54 Ga, whereas five other meteorites show only lower age limits over 4.35–4.46 Ga. Ar‐Ar ages of several enstatite chondrites are as old or older as the oldest Ar‐Ar ages of ordinary chondrites, which suggests that enstatite chondrites may have derived from somewhat smaller parent bodies, or were metamorphosed to lower temperatures compared to other chondrite types. Many enstatite meteorites are brecciated and/or shocked, and some of the younger Ar‐Ar ages may record these impact events. Although impact heating of ordinary chondrites within the last 1 Ga is relatively common for ordinary chondrites, only Bethune gives any significant evidence for such a young event.  相似文献   

8.
Abstract— The 40Ar‐39Ar dating technique has been applied to the lunar meteorites Northwest Africa 032 (NWA 032), an unbrecciated mare basalt, and Northwest Africa 773 (NWA 773), (composed of cumulate and breccia lithologies), to determine the crystallization age and timing of shock events these meteorites may have experienced. Stepped heating analyses of several different samples of NWA 032 gave complex age spectra but indistinguishable total ages with a mean of 2.779 ± 0.014 Gyr. Possible causes of the complex age spectra obtained from NWA 032 include recoil of 39Ar, or the presence of pre‐shock 40Ar incorporated into shock‐melt veins. The effects of shock veins were investigated by laser fusion of 20 small samples expected to contain varying proportions of the shock veins. The laser ages show a narrow age distribution between 2.61–2.86 Gyr and a mean of 2.73 ± 0.03 Gyr, identical to the total age of ?2.80 Gyr obtained for the bulk sample. Diffusion calculations based on the stepped heating data indicate that Ar release can be reconciled by release from feldspar (and possibly shock veins) at low temperatures followed by pyroxene at higher temperatures. The exposure age of NWA 032 is 212 ± 11 Myr, and it contains low trapped solar Ar. Stepped heating of cumulate and breccia portions of NWA 773 also give a relatively young age of 2.91 Gyr. The presence of trapped Ar in the breccia makes the age determination of this component less precise, but release of Ar appears to be from the same mineral phase, assumed to be plagioclase, in both lithologies. A marked difference in exposure age between the 2 lithologies also exists, with the breccia having spent 81 Myr longer at the lunar surface; this finding is consistent with the higher trapped Ar content of this lithology. Assuming that 2.80 Gyr and 2.91 Gyr are the crystallization ages of NWA 032 and NWA 773 respectively, these two meteorites are the youngest lunar mare basalts available for study.  相似文献   

9.
Abstract— The Zagami shergottite experienced a complex, petrogenetic formation history (McCoy et al. 1992, 1999). Like several shergottites, Zagami contains excess 40Ar relative to its formation age. To understand the origin of this excess 40Ar, we made 39Ar‐40Ar analyses on plagioclase and pyroxene minerals from two phases representing different stages in the magma evolution. Surprisingly, all these separates show similar concentrations of excess 40Ar, ?1 × 10?6 cm3/g. We present arguments against this excess 40Ar having been introduced from the Martian atmosphere as impact glass. We also present evidence against excess 40Ar being a partially degassed residue from a basalt that actually formed ?4 Gyr ago. We utilize our experimental data on Ar diffusion in Zagami and evidence that it was shock‐heated to only ?70 °C, and we assume this heating occurred during an ejection from Mars ?3 Myr ago. With these constraints, thermal considerations necessitates either that its ejected mass was impossibly large, or that its shock‐heating temperature was an order of magnitude higher than that measured. We suggest that this excess 40Ar was inherited from the Zagami magma, and that it was introduced into the magma either by degassing of a larger volume of material or by early assimilation of old, K‐rich crustal material. Similar concentrations of excess 40Ar in the analyzed separates imply that this magma maintained a relatively constant 40Ar concentration throughout its crystallization. This likely occurred through volatile degassing as the magma rose toward the surface and lithostatic pressure was released. These concepts have implications for excess 40Ar in other shergottites.  相似文献   

10.
Abstract— We report new 39Ar‐40Ar measurements on 15 plagioclase, pyroxene, and/or whole rock samples of 8 Martian shergottites. All age spectra suggest ages older than the meteorite formation ages, as defined by Sm‐Nd and Rb‐Sr isochrons. Employing isochron plots, only Los Angeles plagioclase and possibly Northwest Africa (NWA) 3171 plagioclase give ages in agreement with their formation ages. Isochrons for all shergottite samples reveal the presence of trapped Martian 40Ar (40Arxs), which exists in variable amounts in different lattice locations. Some 40Arxs is uniformly distributed throughout the lattice, resulting in a positive isochron intercept, and other 40Arxs occurs in association with K‐bearing minerals and increases the isochron slope. These samples demonstrate situations where linear Ar isochrons give false ages that are too old. After subtracting 40Ar*that would accumulate by 40K decay since meteorite formation and small amounts of terrestrial 40Ar, all young age samples give similar 40Arxs concentrations of ?1–2 × 10?6cm3/g, but a variation in K content by a factor of ?80. Previously reported NASA Johnson Space Center data for Zagami, Shergotty, Yamato (Y‐) 000097, Y‐793605, and Queen Alexandra Range (QUE) 94201 shergottites show similar concentrations of 40Arxs to the new meteorite data reported here. Similar 40Arxs in different minerals and meteorites cannot be explained as arising from Martian atmosphere carried in strongly shocked phases such as melt veins. We invoke the explanation given by Bogard and Park (2008) for Zagami, that this 40Arxs in shergottites was acquired from the magma. Similarity in 40Arxs among shergottites may reveal common magma sources and/or similar magma generation and emplacement processes.  相似文献   

11.
Abstract— Isheyevo is a metal‐rich carbonaceous chondrite that contains several lithologies with different abundances of Fe,Ni metal (7–90 vol%). The metal‐rich lithologies with 50–60 vol% of Fe,Ni metal are dominant. The metal‐rich and metal‐poor lithologies are most similar to the CBb and CH carbonaceous chondrites, respectively, providing a potential link between these chondrite groups. All lithologies experienced shock metamorphism of shock stage S4. All consist of similar components—Fe,Ni metal, chondrules, refractory inclusions (Ca, Al‐rich inclusions [CAIs] and amoeboid olivine aggregates [AOAs]), and heavily hydrated lithic clasts—but show differences in their modal abundances, chondrule sizes, and proportions of porphyritic versus non‐porphyritic chondrules. Bulk chemical and oxygen isotopic compositions are in the range of CH and CB chondrites. Bulk nitrogen isotopic composition is highly enriched in 15N (δ15N = 1122‰). The magnetic fraction is very similar to the bulk sample in terms of both nitrogen release pattern and isotopic profile; the non‐magnetic fraction contains significantly less heavy N. Carbon released at high temperatures shows a relatively heavy isotope signature. Similarly to CBb chondrites, ~20% of Fe,Ni‐metal grains in Isheyevo are chemically zoned. Similarly to CH chondrites, some metal grains are Ni‐rich (>20 wt% Ni). In contrast to CBb and CH chondrites, most metal grains are thermally decomposed into Ni‐rich and Ni‐poor phases. Similar to CH chondrites, chondrules have porphyritic and non‐porphyritic textures and ferromagnesian (type I and II), silica‐rich, and aluminum‐rich bulk compositions. Some of the layered ferromagnesian chondrules are surrounded by ferrous olivine or phyllosilicate rims. Phyllosilicates in chondrule rims are compositionally distinct from those in the hydrated lithic clasts. Similarly to CH chondrites, CAIs are dominated by the hibonite‐, grossite‐, and melilite‐rich types; AOAs are very rare. We infer that Isheyevo is a complex mixture of materials formed by different processes and under different physico‐chemical conditions. Chondrules and refractory inclusions of two populations, metal grains, and heavily hydrated clasts accreted together into the Isheyevo parent asteroid in a region of the protoplanetary disk depleted in fine‐grained dust. Such a scenario is consistent with the presence of solar wind—implanted noble gases in Isheyevo and with its comparatively old K‐Ar age. We cannot exclude that the K‐Ar system was affected by a later collisional event. The cosmic‐ray exposure (CRE) age of Isheyevo determined by cosmogenic 38Ar is ~34 Ma, similar to that of the Bencubbin (CBa) meteorite.  相似文献   

12.
New petrography and 40Ar‐39Ar ages have been obtained for 1–3 mm sized rock fragments from Apollo 16 Station 13 soil 63503 (North Ray crater ejecta) and chips from three rocks collected by Apollo 16 and Apollo 17 missions. Selection of these samples was aimed at the old 40Ar‐39Ar ages to understand the early history of the lunar magnetic field and impact flux. Fifteen samples were studied including crustal material, polymict feldspathic fragmental breccias, and impact melts. The impact ages obtained range between approximately 3.3 and 4.3 billion years (Ga). Polymict fragmental breccia 63503,1 exhibits the lowest signs of recrystallization observed and a probable old relic age of 4.547 ± 0.027. The plateau age of 4.293 ± 0.044 Ga obtained for impact melt rock 63503,13 represents the oldest known age for such a lithology. Possibly, this age represents the minimum age for the South Pole‐Aitken (SPA) Basin. In agreement with literature data, these results show that impact ages >3.9 Ga are found in lunar rocks, especially within soil 63503. Impact exhumation of deep‐seated warm crustal material onto the lunar surface is considered to explain the common 4.2 Ga ages obtained for weakly shocked samples from soil 63503 and Apollo 17. This would directly imply that one or more basin‐forming events occurred at that time. Some rock fragments showing none to limited petrologic features indicate thermal annealing. These rocks may have lost Ar while resident within the hot‐ejecta of a large basin. Concurrent with previous studies, these results lead us to advocate for a complex impact flux in the inner solar system during the initial approximately 1.3 Ga.  相似文献   

13.
A meteorite fall was heard and collected on July 13, 2010 at about 18:00 (local time) in the Shibanjing village of the Huaxi district of Guiyang, Guizhou province, China. The total mass of the fall is estimated to be at least 1.6 kg; some fragments are missing. The meteorite consists mainly of olivine, low‐Ca pyroxene, high‐Ca pyroxene, plagioclase, kamacite, taenite, and troilite. Minor phases include chromite and apatite. Various textural types of chondrules exist in this meteorite: most chondrule textures can be easily defined. The grain sizes of secondary plagioclase in this meteorite range from 2 to 50 μm. The chemical composition of olivine and low‐Ca pyroxene are uniform; Fa in olivine and Fs in low‐Ca pyroxene are, respectively, 19.6 ± 0.2 and 17.0 ± 0.3 (mole%). Huaxi has been classified as an H5 ordinary chondrite, with a shock grade S2, and weathering W0. The weak shock features, rare fractures, and the high porosity (17.6%) indicates that Huaxi is a less compacted meteorite. The preatmospheric radius of Huaxi is ~11 cm, corresponding to ~21 kg. The meteorite experienced a relatively short cosmic‐ray exposure of about 1.6 ± 0.1 Ma. The 4He and 40Ar retention ages are older than 4.6 Ga implying that Huaxi did not degas after thermal metamorphism on its parent body.  相似文献   

14.
Abstract— Studies of several samples of the large Caddo County IAB iron meteorite reveal andesitic material enriched in Si, Na, Al, and Ca, which is essentially unique among meteorites. This material is believed to have formed from a chondritic source by partial melting and to have further segregated by grain coarsening. Such an origin implies extended metamorphism of the IAB parent body. New 39Ar‐40Ar ages for silicate from three different Caddo samples are consistent with a common age of 4.50‐4.51 Gyr. Less well‐defined Ar‐Ar degassing ages for inclusions from two other IABs, EET (Elephant Moraine) 83333 and Udei Station, are ?4.32 Gyr, whereas the age for Campo del Cielo varies considerably over about 3.23‐4.56 Gyr. New 129I‐129Xe ages for Caddo County and EET 83333 are 4557.9 ± 0.1 Myr and 4557–4560 Myr, respectively, relative to an age of 4562.3 Myr for Shallowater. Considering all reported Ar‐Ar degassing ages for IABs and related winonaites, the range is ?4.32‐4.53 Gyr, but several IABs give similar Ar ages of 4.50‐4.52 Gyr. We interpret these older Ar ages to represent cooling after the time of last significant metamorphism on the parent body and the younger ages to represent later 40Ar diffusion loss. The older Ar‐Ar ages for IABs are similar to Sm‐Nd and Rb‐Sr isochron ages reported in the literature for Caddo County. Considering the possibility that IAB parent body formation was followed by impact disruption, reassembly, and metamorphism (e.g., Benedix et al. 2000), the Ar‐Ar ages and IAB cooling rates deduced from Ni concentration profiles in IAB metal (Herpfer et al. 1994) are consistent if the time of the postassembly metamorphism was as late as about 4.53 Gyr ago. However, I‐Xe ages reported for some IABs define much older ages of about 4558–4566 Myr, which cannot easily be reconciled with the much younger Ar‐Ar and Sm‐Nd ages. An explanation for the difference in radiometric ages of IABs may reside in combinations of the following: a) I‐Xe ages have very high closure temperatures and were not reset during metamorphism about 4.53 Gyr ago; b) a bias exists in the 40K decay constants which makes these Ar‐Ar ages approximately 30 Myr too young; c) the reported Sm‐Nd and Rb‐Sr ages for Caddo are in error by amounts equal to or exceeding their reported 2‐sigma uncertainties; and d) about 30 Myr after the initial heating that produced differentiation of Caddo silicate and mixing of silicate and metal, a mild metamorphism of the IAB parent body reset the Ar‐Ar ages.  相似文献   

15.
If chondrules were exposed to cosmic rays prior to meteorite compaction, they should retain an excess of cosmogenic noble gases. Beyersdorf‐Kuis et al. (2015) showed that such excesses can be detected provided that the chemical composition of each individual chondrule is precisely known. However, their study was limited to a few samples as they had to be irradiated in a nuclear reactor for instrumental neutron activation analysis. We developed a novel analytical protocol that combines the measurements of He and Ne isotopic concentrations with a fast method to correct for differences in chemical composition using micro X‐ray computed tomography. Our main idea is to combine noble gas, nuclear track, and petrography data for numerous chondrules to understand the precompaction exposure history of the chondrite parent bodies. Here, we report our results for a total of 77 chondrules and four matrix samples from NWA 8276 (L3.00), NWA 8007 (L3.2), and Bjurböle (L/LL4). All chondrules from the same meteorite have within uncertainty identical 21Ne exposure ages, and all chondrules from Bjurböle have within uncertainty identical 3He exposure ages. However, most chondrules from NWA 8276 and a few from NWA 8007 show small but resolvable differences in 3He exposure age that we attribute to matrix contamination and/or gas loss. The finding that none of the chondrules has noble gas excesses is consistent with the uniform track density found for each meteorite. We conclude that the studied chondrules did not experience a precompaction exposure longer than a few Ma assuming present‐day flux of galactic cosmic rays. A majority of chondrules from L and LL chondrites thus rapidly accreted and/or was efficiently shielded from cosmic rays in the solar nebula.  相似文献   

16.
We analyzed cosmogenic nuclides in metal and/or silicate (primarily olivine) separated from the main‐group pallasites Admire, Ahumada, Albin, Brahin, Brenham, Esquel, Finmarken, Glorieta Mountain, Huckitta, Imilac, Krasnojarsk, Marjalahti, Molong, Seymchan, South Bend, Springwater, and Thiel Mountains and from Eagle Station. The metal separates contained an olivine fraction which although small, <1 wt% in most cases, nonetheless contributes significantly to the budgets of some nuclides (e.g., up to 35% for 21Ne and 26Al). A correction for olivine is therefore essential and was made using model calculations and/or empirical relations for the production rates of cosmogenic nuclides in iron meteoroids and/or measured elemental concentrations. Cosmic‐ray exposure (CRE) ages for the metal phases of the main‐group pallasites range from 7 to 180 Ma, but many of the ages cluster around a central peak near 100 Ma. These CRE ages suggest that the parent body of the main‐group pallasites underwent a major break‐up that produced most of the meteorites analyzed. The CRE age distribution for the pallasites overlaps only a small fraction of the distribution for the IIIAB iron meteorites. Most pallasites and IIIAB irons originated in different collisions, probably on different parent bodies; a few IIIABs and pallasites may have come out of the same collision but a firm conclusion requires further study. CRE ages calculated from noble gas and radionuclide data of the metal fraction are higher on average than the 21Ne exposure ages obtained for the olivine samples. As the metal and olivine fractions were taken in most cases from different specimens, the depth‐dependency of the production rate ratio 10Be/21Ne in metal, not accounted for in our calculations, may explain the difference.  相似文献   

17.
Abstract— We performed a comprehensive study of the He, Ne, and Ar isotopic abundances and of the chemical composition of bulk material and components of the H chondrites Dhajala, Bath, Cullison, Grove Mountains 98004, Nadiabondi, Ogi, and Zag, of the L chondrites Grassland, Northwest Africa 055, Pavlograd, and Ladder Creek, of the E chondrite Indarch, and of the C chondrites Hammadah al Hamra 288, Acfer 059, and Allende. We discuss a procedure and necessary assumptions for the partitioning of measured data into cosmogenic, radiogenic, implanted, and indigenous noble gas components. For stone meteorites, we derive a cosmogenic ratio 20Ne/22Ne of 0.80 ± 0.03 and a trapped solar 4He/3He ratio of 3310 ± 130 using our own and literature data. Chondrules and matrix from nine meteorites were analyzed. Data from Dhajala chondrules suggest that some of these may have experienced precompaction irradiation by cosmic rays. The other chondrules and matrix samples yield consistent cosmic‐ray exposure (CRE) ages within experimental errors. Some CRE ages of some of the investigated meteorites fall into clusters typically observed for the respective meteorite groups. Only Bath's CRE age falls on the 7 Ma double‐peak of H chondrites, while Ogi's fits the 22 Ma peak. The studied chondrules contain trapped 20Ne and 36Ar concentrations in the range of 10?6–10?9 cm3 STP/g. In most chondrules, trapped Ar is of type Q (ordinary chondritic Ar), which suggests that this component is indigenous to the chondrule precursor material. The history of the Cullison chondrite is special in several respects: large fractions of both CR‐produced 3He and of radiogenic 4He were lost during or after parent body breakup, in the latter case possibly by solar heating at small perihelion distances. Furthermore, one of the matrix samples contains constituents with a regolith history on the parent body before compaction. It also contains trapped Ne with a 20Ne/22Ne ratio of 15.5 ± 0.5, apparently fractionated solar Ne.  相似文献   

18.
Abstract— Radiochronometry of L chondritic meteorites yields a rough age estimate for a major collision in the asteroid belt about 500 Myr ago. Fossil meteorites from Sweden indicate a highly increased influx of extraterrestrial matter in the Middle Ordovician ~480 Myr ago. An association with the L‐chondrite parent body event was suggested, but a definite link is precluded by the lack of more precise radiometric ages. Suggested ages range between 450 ± 30 Myr and 520 ± 60 Myr, and can neither convincingly prove a single breakup event, nor constrain the delivery times of meteorites from the asteroid belt to Earth. Here we report the discovery of multiple 40Ar‐39Ar isochrons in shocked L chondrites, particularly the regolith breccia Ghubara, that allow the separation of radiogenic argon from multiple excess argon components. This approach, applied to several L chondrites, yields an improved age value that indicates a single asteroid breakup event at 470 ± 6 Myr, fully consistent with a refined age estimate of the Middle Ordovician meteorite shower at 467.3 ± 1.6 Myr (according to A Geologic Time Scale 2004). Our results link these fossil meteorites directly to the L‐chondrite asteroid destruction, rapidly transferred from the asteroid belt. The increased terrestrial meteorite influx most likely involved larger projectiles that contributed to an increase in the terrestrial cratering rate, which implies severe environmental stress.  相似文献   

19.
Abstract— Samples from a suite of Shergotty—Nakhla—Chassigny (SNC) meteorites were analyzed for their O isotopic ratios by a modified version of the laser fluorination technique. Measured isotopic ratios (17O/16O and 18O/16O) from bulk samples of the Shergottites, EETA79001, Shergotty and Zagami; the Nakhlite Lafayette; and Chassigny are similar to those reported in the literature, as are those from olivine and pyroxene mineral separates from Lafayette. Iddingsite, a preterrestrial alteration product of Lafayette, was measured for the first time as a separate phase. Oxygen isotopic ratios increase with the percentage of iddingsite in a sample to a maximum δ18O of 14.4% for a ~90% separate. Based on these measurements, end-member iddingsite has a δ18O of 15.6%, which places it among other 18O-enriched secondary phases (carbonate and silica) observed in SNC meteorites. The relatively large difference in δ18O between iddingsite and the olivine and pyroxene it replaces (~11%) is typical of low-temperature alteration products. A range of crustal fluid δ18O values can be interpreted from the δ18O for end-member iddingsite, assuming isotopic equilibrium was achieved during low-temperature hydrous alteration (<100 °C; Treiman et al., 1993). The calculated range of values, ?15 to 5%, depends on many factors including: (1) the modal mineralogy of iddingsite, (2) potential isotopic exchange among other O-bearing phases such as host silicate and carbonate, and (3) exchange with evolved or exotic O reservoirs on Mars. Despite the lack of constraints, the calculated range is consistent with isotopic exchange, and possibly equilibria, among components of the CO2-carbonate-iddingsite-H2O system at low temperature. The SNC meteorite samples in this study have Δ17O values that are indistinguishable from bulk Mars (0.30%), except for a single, small sample of iddingsite that has an anomalous Δ17O of ~1.4%. While analytical difficulties make isotopic measurements for this sample problematic, the Δ17O is similar in direction to Δ17O reported for waters extracted from bulk samples of Lafayette (Karlsson et al., 1992). If the Δ17O for iddingsite is confirmed, it can be concluded that evolved or exotic fluids on Mars have contributed volatiles to the O reservoir from which iddingsite formed 130 to 700 Ma ago.  相似文献   

20.
Northwest Africa (NWA) 1950 is a new member of the lherzolitic shergottite clan of the Martian meteorites recently found in the Atlas Mountains. The petrological, mineralogical, and geochemical data are very close to those of the other known lherzolitic shergottites. The meteorite has a cumulate gabbroic texture and its mineralogy consists of olivine (Fo66 to Fo75), low and high‐Ca pyroxenes (En78Fs19Wo2‐En60Fs26W14; En53Fs16Wo31‐En45Fs14Wo41), and plagioclase (An57Ab41Or1 to An40Ab57Or3; entirely converted into maskelynite during intense shock metamorphism). Accessory minerals include phosphates (merrillite), chromite and spinels, sulfides, and a glass rich in potassium. The oxygen isotopic values lie on the fractional line defined by the other SNC meteorites (Δ17O = 0.312 %o). The composition of NWA 1950 is very similar to the other lherzolitic shergottites and suggests an origin from the same magmatic system, or at least crystallization from a close parental melt. Cosmogenic ages indicate an ejection age similar to those of the other lherzolitic shergottites. The intensity of the shock is similar to that observed in other shergottites, as shown by the occurrence of small melt pockets containing glass interwoven with stishovite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号