首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Walters SP  Thebo AL  Boehm AB 《Water research》2011,45(4):1752-1762
Fecal pollution enters coastal waters through multiple routes, many of which originate from land-based activities. Runoff from pervious and impervious land surfaces transports pollutants from land to sea and can cause impairment of coastal ocean waters. To understand how land use practices and water characteristics influence concentrations of fecal indicator bacteria (FIB) and pathogens in natural waters, fourteen coastal streams, rivers, and tidal lagoons, surrounded by variable land use and animal densities, were sampled every six weeks over two years (2008 & 2009). Fecal indicator bacteria (FIB; Escherichia coli and Enterococci) and Salmonella concentrations, the occurrence of Bacteroidales human, ruminant, and pig-specific fecal markers, E. coli O157:H7, and Shiga toxin (stx) genes present in E. coli, were measured. In addition, environmental and climatic variables (e.g., temperature, salinity, rainfall), as well as human and livestock population densities and land cover were quantified. Concentrations of FIB and Salmonella were correlated with each other, but the occurrence of host-specific Bacteroidales markers did not correlate with FIB or pathogens. FIB and Salmonella concentrations, as well as the occurrence of E. coli harboring stx genes, were positively associated with the fraction of the surrounding subwatershed that was urban, while the occurrence of E. coli O157:H7 was positively associated with the agricultural fraction. FIB and Salmonella concentrations were negatively correlated to salinity and temperature, and positively correlated to rainfall. Areal loading rates of FIB, Salmonella and E. coli O157:H7 to the coastal ocean were calculated for stream and river sites and varied with land cover, salinity, temperature, and rainfall. Results suggest that FIB and pathogen concentrations are influenced, in part, by their flux from the land, which is exacerbated during rainfall; once waterborne, bacterial persistence is affected by water temperature and salinity.  相似文献   

2.
Blooms of toxic cyanobacteria such as Microcystis aeruginosa periodically occur within wastewater treatment lagoons in the warmer months, and may consequently cause contamination of downstream water and outages of the supply of recycled wastewater. Lab-scale sonication (20 kHz) was conducted on suspensions of M. aeruginosa isolated from a wastewater treatment lagoon, and two other algal strains, Anabaena circinalis and Chlorella sp., to investigate cell reduction, growth inhibition, release of microcystin and sonication efficiency in controlling the growth of the M. aeruginosa. For M. aeruginosa, for all sonication intensities and exposure times trialled, sonication led to an immediate reduction in the population, the highest reduction rate occurring within the initial 5 min. Sonication for 5 min at 0.32 W/mL, or for a longer exposure time (>10 min) at a lower power intensity (0.043 W/mL), led to an immediate increase in microcystin level in the treated suspensions. However, prolonged exposure (>10 min) to sonication at higher power intensities reduced the microcystin concentration significantly. Under the same sonication conditions, the order of decreasing growth inhibition of the three algal species was: A. circinalis > M. aeruginosa > Chlorella sp., demonstrating sonication has the potential to selectively remove/deactivate harmful cyanobacteria from the algal communities in wastewater treatment lagoons.  相似文献   

3.
Different environmental conditions support optimal growth by Aphanizomenon and Microcystis in Ford Lake, Michigan, USA, based on weekly species biovolume and water chemistry measurements from June through October 2005-2007. Experimental withdrawal of hypolimnetic water through the outlet dam was conducted in 2006, with 2005 and 2007 acting as control years, to test theory regarding management of nuisance and toxic cyanobacteria. The dynamics of Aphanizomenon and Microcystis blooms in Ford Lake appear to be driven largely by NO3 concentrations, with higher levels shifting the advantage to Microcystis (P < 0.0001). Aphanizomenon was most successful with a mean TN:TP ratio (mol:mol) of 48.3:1, whereas Microcystis thrived with a mean ratio of 70.1:1. Withdrawal of hypolimnetic water successfully destabilized the water column and led to higher levels of NO3 and the near elimination of the Aphanizomenon bloom in 2006 (P < 0.0001). Selective withdrawal did not reduce Microcystis biovolume or microcystin toxicity. Microcystis biovolume and NO3 levels were positively correlated with microcystin toxin (P = 0.01) and jointly accounted for 30.5% of the variability in the data. Selective withdrawal may be a viable management option for improving water quality under certain circumstances. To fully address the problem of nuisance and toxic algal blooms in Ford Lake, however, an integrated approach is required that targets cyanobacteria biovolume dynamics as well as conditions suited for toxin production.  相似文献   

4.
The presence of pathogenic free-living amoebae (FLA) such as Naegleria fowleri in freshwater environments is a potential public health risk. Although its occurrence in various water sources has been well reported, its presence and associated factors in biofilm remain unknown. In this study, the density of N. fowleri in biofilms spontaneously growing on glass slides fed by raw freshwater were followed at 32 °C and 42 °C for 45 days. The biofilms were collected with their substrata and characterized for their structure, numbered for their bacterial density, thermophilic free-living amoebae, and pathogenic N. fowleri. The cell density of N. fowleri within the biofilms was significantly affected both by the temperature and the nutrient level (bacteria/amoeba ratio). At 32 °C, the density remained constantly low (1-10 N. fowleri/cm2) indicating that the amoebae were in a survival state, whereas at 42 °C the density reached 30-900 N. fowleri/cm2 indicating an active growth phase. The nutrient level, as well, strongly affected the apparent specific growth rate (μ) of N. fowleri in the range of 0.03-0.23 h−1. At 42 °C a hyperbolic relationship was found between μ and the bacteria/amoeba ratio. A ratio of 106 to 107 bacteria/amoeba was needed to approach the apparent μmax value (0.23 h−1). Data analysis also showed that a threshold for the nutrient level of close to 104 bacteria/amoeba is needed to detect the growth of N. fowleri in freshwater biofilm. This study emphasizes the important role of the temperature and bacteria as prey to promote not only the growth of N. fowleri, but also its survival.  相似文献   

5.
Confined animal feeding operations (CAFOs) often use anaerobic lagoons for manure treatment. In the USA, swine CAFO lagoon water is used for crop irrigation that is regulated by farm-specific nutrient management plans (NMPs). Implementation of stricter US environmental regulations in 2013 will set soil P limits; impacting land applications of manure and requiring revision of NMPs. Precise knowledge of lagoon water quality is needed for formulating NMPs, for understanding losses of N and C in ammonia and greenhouse gas emissions, and for understanding risks of environmental contamination by fecal bacteria, including zoonotic pathogens. In this study we determined year-round levels of nutrients and bacteria from swine CAFO lagoon water. Statistical analysis of data for pH, electrical conductivity (EC), inorganic and organic C, total N, water-soluble and total minerals (Ca, Cu, Fe, K, Mg, Mn, P, and Zn) and bacteria (Escherichia coli, enterococci, Clostridium perfringens, Campylobacter spp., Listeria spp., Salmonella spp., and staphylococci) showed that all differed significantly by dates of collection. During the irrigation season, levels of total N decreased by half and the N:P ratio changed from 9.7 to 2.8. Some seasonal differences were correlated with temperature. Total N and inorganic C increased below 19 °C, and decreased above 19 °C, consistent with summer increases in ammonia and greenhouse gas emissions. Water-soluble Cu, Fe, and Zn increased with higher summer temperatures while enterococci and zoonotic pathogens (Campylobacter, Listeria, and Salmonella) decreased. Although their populations changed seasonally, the zoonotic pathogens were present year-round. Increasing levels of E. coli were statistically correlated with increasing pH. Differences between depths were also found. Organic C, total nutrients (C, Ca, Cu, Fe, Mg, Mn, N, P, and Zn) and C. perfringens were higher in deeper samples, indicating stratification of these parameters. No statistical interactions were found between collection dates and depths.  相似文献   

6.
The contamination of hot water samples with Legionella spp. was studied in relation to temperature, total hardness, trace element concentrations (iron, zinc, manganese, and copper) and heterotrophic plate counts (HPC) at both 22 and 37 °C. Factor analysis and receiver operating characteristic (ROC) curves were used to establish the cut-off of water parameters as predictors for Legionella contamination. Legionella spp. was isolated in 194 out of 408 samples (47.5%), with Legionella pneumophila being the most common (92.8%). After multiple logistic regression analysis, the risk for legionellae colonisation was positively associated with Mn levels >6 μg l−1, HPC at 22 °C >27 CFU l−1, and negatively with temperature >55 °C and Cu levels >50 μg l−1. Multiple regression analysis revealed that Legionella spp. counts were positively associated with Mn, HPC at 37 °C and Zn and negatively associated with temperature. Only 1 out of the 97 samples (1%) having a Mn concentration, an HPC at 22 °C and an HPC at 37 °C below the respective median values exhibited a Legionella spp. concentration exceeding 104 CFU l−1vs. 41 out of the 89 samples (46.1%) with the three parameters above the medians. Our results show a qualitative and quantitative relationship between Legionella spp., the Mn concentration and heterotrophic plate counts in hot water samples from different buildings, suggesting that these parameters should be included in a water safety plan. The role of manganese in biofilm formation and its possible involvement in the mechanisms favouring Legionella survival and growth in water niches should be investigated further.  相似文献   

7.
Recent concerns have been raised that plants such as ragwort (Senecio jacobaea), yew (Taxus baccata) and rhododendron (Rhododendron ponticum) that are toxic to livestock may be included in compost windrows but may not be fully detoxified by the composting process. This study investigates the decomposition during composting of toxic pyrrolizidine alkaloids present in ragwort, taxines (A and B) present in yew, and grayanotoxins (GTX I, II, and III) present in rhododendron during composting. Plant samples were contained within microporous bags either towards the edge or within the centre of a pilot-scale compost heap. They were destructively harvested at regular intervals over 1200 °C cumulative temperature (about three months). Samples were analysed for levels of toxins by liquid chromatography time of flight mass spectrometry (LC-TOF-MS). Pyrrolizidine alkaloids and taxines were shown to degrade completely during the composting process. While GTX I showed significant reductions, concentrations of GTX III remained unchanged after 1200 °C cumulative temperature. However, estimates of exposure to grazing livestock coming into contact with source-segregated green waste compost containing up to 7% rhododendron suggest that GTX III poses no appreciable risk.  相似文献   

8.
Over a five year period (2004-08), 1171 surface water samples were collected from up to 24 sampling locations representing a wide range of stream orders, in a river basin in eastern Ontario, Canada. Water was analyzed for Cryptosporidium oocysts and Giardia cyst densities, the presence of Salmonella enterica subspecies enterica, Campylobacter spp., Listeria monocytogenes, and Escherichia coli O157:H7. The study objective was to explore associations among pathogen densities/occurrence and objectively defined land use, weather, hydrologic, and water quality variables using CART (Classification and Regression Tree) and binary logistical regression techniques. E. coli O157:H7 detections were infrequent, but detections were related to upstream livestock pasture density; 20% of the detections were located where cattle have access to the watercourses. The ratio of detections:non-detections for Campylobacter spp. was relatively higher (>1) when mean air temperatures were 6% below mean study period temperature values (relatively cooler periods). Cooler water temperatures, which can promote bacteria survival and represent times when land applications of manure typically occur (spring and fall), may have promoted increased frequency of Campylobacter spp. Fifty-nine percent of all Salmonella spp. detections occurred when river discharge on a branch of the river system of Shreve stream order = 9550 was >83 percentile. Hydrological events that promote off farm/off field/in stream transport must manifest themselves in order for detection of Salmonella spp. to occur in surface water in this region. Fifty seven percent of L. monocytogenes detections occurred in spring, relative to other seasons. It was speculated that a combination of winter livestock housing, silage feeding during winter, and spring application of manure that accrued during winter, contributed to elevated occurrences of this pathogen in spring. Cryptosporidium and Giardia oocyst and cyst densities were, overall, positively associated with surface water discharge, and negatively associated with air/water temperature during spring-summer-fall. Yet, some of the highest Cryptosporidium oocyst densities were associated with low discharge conditions on smaller order streams, suggesting wildlife as a contributing fecal source. Fifty six percent of all detections of ≥2 bacteria pathogens (including Campylobacter spp., Salmonella spp., and E. coli O157:H7) in water was associated with lower water temperatures (<∼14 °C; primarily spring and fall) and when total rainfall the week prior to sampling was >∼27 mm (62 percentile). During higher water temperatures (>∼14 °C), a higher amount of weekly rainfall was necessary to promote detection of ≥2 pathogens (primarily summer; weekly rainfall ∼>42 mm (>77 percentile); 15% of all ≥2 detections). Less rainfall may have been necessary to mobilize pathogens from adjacent land, and/or in stream sediments, during cooler water conditions; as these are times when manures are applied to fields in the area, and soil water contents and water table depths are relatively higher. Season, stream order, turbidity, mean daily temperature, surface water discharge, cropland coverage, and nearest upstream distance to a barn and pasture were variables that were relatively strong and recurrent with regard to discriminating pathogen presence and absence, and parasite densities in surface water in the region.  相似文献   

9.
Cyanobacterial blooms in eutrophied water body are generally composed of various genotypes with or without microcystin-producing genes (mcy gene cluster). Thus there is a need for quantification of potent toxin producing strains. The present study aimed at identifying microcystin variants and its producer strains in Durgakund pond, Varanasi, India, based on quantification of cpcBA-IGS and mcyA (condensation domain) genes using real-time PCR and LC-MS. Increase in microcystin concentrations was correlated with increase in mcyA copy number and the level of pigments (chlorophyll a, phycocyanin and carotenoids). Also, selected environmental factors (water temperature, light irradiance, rainfall, pH, N and P) and the concentration of microcystin variants (MC-LR, -RR and -YR) were also assessed in samples during May 2010 to April 2011 to establish the possible correlation among these parameters. Nutrients favored cyanobacterial bloom but it could not be correlated with the levels of microcystin variants and seemed to be geographically specific. Microcystis sp. dominant in the pond comprised potentially toxigenic cells. The ratio of potentially toxigenic Microcystis sp. to that of total Microcystis sp. ranged from 0% to 14%. Such studies paved the way to identify and quantify the most potent microcystin producer in the tropical aquatic body.  相似文献   

10.
Soil contamination due to petroleum-derived products is an important environmental problem. We assessed the impacts of diesel oil on plants (Trifolium repens and Lolium perenne) and soil microbial community characteristics within the context of the rhizoremediation of contaminated soils. For this purpose, a diesel fuel spill on a grassland soil was simulated under pot conditions at a dose of 12,000 mg diesel kg− 1 DW soil. Thirty days after diesel addition, T. repens (white clover) and L. perenne (perennial ryegrass) were sown in the pots and grown under greenhouse conditions (temperature 25/18 °C day/night, relative humidity 60/80% day/night and a photosynthetic photon flux density of 400 μmol photon m− 2 s− 1) for 5 months. A parallel set of unplanted pots was also included. Concentrations of n-alkanes in soil were determined as an indicator of diesel degradation. Seedling germination, plant growth, maximal photochemical efficiency of photosystem II (Fv/Fm), pigment composition and lipophylic antioxidant content were determined to assess the impacts of diesel on the studied plants. Soil microbial community characteristics, such as enzyme and community-level physiological profiles, were also determined and used to calculate the soil quality index (SQI). The presence of plants had a stimulatory effect on soil microbial activity. L. perenne was far more tolerant to diesel contamination than T. repens. Diesel contamination affected soil microbial characteristics, although its impact was less pronounced in the rhizosphere of L. perenne. Rhizoremediation with T. repens and L. perenne resulted in a similar reduction of total n-alkanes concentration. However, values of the soil microbial parameters and the SQI showed that the more tolerant species (L. perenne) was able to better maintain its rhizosphere characteristics when growing in diesel-contaminated soil, suggesting a better soil health. We concluded that plant tolerance is of crucial importance for the recovery of soil health during rhizoremediation of contaminated soils.  相似文献   

11.
Biochemical responses in bivalve mollusks are commonly employed in environmental studies as biomarkers of aquatic contamination. The present study evaluated the possible influence of salinity (35, 25, 15 and 9 ppt) in the biomarker responses of Crassostrea gigas oysters exposed to diesel at different nominal concentrations (0.01, 0.1 and 1 mL.L− 1) using a semi-static exposure system. Salinity alone did not resulted in major changes in the gill's catalase activity (CAT), glutathione S-transferase activity (GST) and lipid peroxidation levels (measured as malondialdehyde, MDA), but influenced diesel related responses. At 25 ppt salinity, but not at the other salinity levels, oysters exposed to diesel showed a strikingly positive concentration-dependent GST response. At 25 ppt and 1 mL.L− 1 diesel, the GST activity in the gills remained elevated, even after one week of depuration in clean water. The increased MDA levels in the oysters exposed to diesel comparing to control groups at 9, 15 and 35 ppt salinities suggest the occurrence of lipid peroxidation in those salinities, but not at 25 ppt salinity. The MDA quickly returned to basal levels after 24 h of depuration. CAT activity was unaltered by the treatments employed. High toxicity for 1 mL.L− 1 diesel was observed only at 35 ppt salinity, but not in the other salinities. Results from this study strongly suggest that salinity influences the diesel related biomarker responses and toxicity in C. gigas, and that some of those responses remain altered even after depuration.  相似文献   

12.
Denitrification beds are containers filled with wood by-products that serve as a carbon and energy source to denitrifiers, which reduce nitrate (NO3) from point source discharges into non-reactive dinitrogen (N2) gas. This study investigates a range of alternative carbon sources and determines rates, mechanisms and factors controlling NO3 removal, denitrifying bacterial community, and the adverse effects of these substrates. Experimental barrels (0.2 m3) filled with either maize cobs, wheat straw, green waste, sawdust, pine woodchips or eucalyptus woodchips were incubated at 16.8 °C or 27.1 °C (outlet temperature), and received NO3 enriched water (14.38 mg N L−1 and 17.15 mg N L−1). After 2.5 years of incubation measurements were made of NO3-N removal rates, in vitro denitrification rates (DR), factors limiting denitrification (carbon and nitrate availability, dissolved oxygen, temperature, pH, and concentrations of NO3, nitrite and ammonia), copy number of nitrite reductase (nirS and nirK) and nitrous oxide reductase (nosZ) genes, and greenhouse gas production (dissolved nitrous oxide (N2O) and methane), and carbon (TOC) loss. Microbial denitrification was the main mechanism for NO3-N removal. Nitrate-N removal rates ranged from 1.3 (pine woodchips) to 6.2 g N m−3 d−1 (maize cobs), and were predominantly limited by C availability and temperature (Q10 = 1.2) when NO3-N outlet concentrations remained above 1 mg L−1. The NO3-N removal rate did not depend directly on substrate type, but on the quantity of microbially available carbon, which differed between carbon sources. The abundance of denitrifying genes (nirS, nirK and nosZ) was similar in replicate barrels under cold incubation, but varied substantially under warm incubation, and between substrates. Warm incubation enhanced growth of nirS containing bacteria and bacteria that lacked the nosZ gene, potentially explaining the greater N2O emission in warmer environments. Maize cob substrate had the highest NO3-N removal rate, but adverse effects include TOC release, dissolved N2O release and substantial carbon consumption by non-denitrifiers. Woodchips removed less than half of NO3 removed by maize cobs, but provided ideal conditions for denitrifying bacteria, and adverse effects were not observed. Therefore we recommend the combination of maize cobs and woodchips to enhance NO3 removal while minimizing adverse effects in denitrification beds.  相似文献   

13.
Glycerol-3-phosphate dehydrogenase (G3pdh) is a key enzyme in the pathway of glycerol synthesis, which converts dihydroxyacetone phosphate (DHAP) to glycerol-3-phosphate. In this study, the effects of salinity changes on variation of cell shape and single cell glycerol content of Dunaliella salina were observed, and the effects of salinity changes on the gene expressions of a (NAD+)-dependent G3pdh (EC1.1.1.8) among G3pdh isozymes in D. salina were detected by real-time quantitative PCR. Results showed that the changes of shape and volume of D. salina cell cultured chronically at various salinities were minor, but when the salinity was changed rapidly, the variations of cell shape and cell volume of D. salina were significant, which were recovered basically after 2 h except treating by high salinity. Also, it was found some lipid globules in the surface of D. salina cells when the salinity increased from 2.0 to 4.0-5.0 M NaCl rapidly. When D. salina was cultured chronically at various salinities, the accumulation of single cell glycerol increased with increased salinity, and D. salina also could rapidly decrease or increase single cell glycerol contents to adapt to hypoosmotic or hyperosmotic shock. The expression level of G3pdh in D. salina grown at various salinities was significantly inversely correlated to the salinity, but there was no significant correlation between the expression level of G3pdh and salinity after 2 h of treatment by hyperosmotic or hypoosmotic shock.  相似文献   

14.
Iron oxidation under neutral conditions (pH 6.5-8) may be a homo- or heterogeneous chemically- or a biologically-mediated process. The chemical oxidation is supposed to outpace the biological process under slightly alkaline conditions (pH 7-8). The iron oxidation kinetics and growth of Gallionella spp. - obligatory chemolithotrophic iron oxidizers - were assessed in natural, organic carbon-containing water, in continuous lab-scale reactors and full-scale groundwater trickling filters in the Netherlands. From Gallionella cell numbers determined by qPCR, balances were made for all systems. The homogeneous chemical iron oxidation occurred in accordance with the literature, but was retarded by a low water temperature (13 °C). The contribution of the heterogeneous chemical oxidation was, despite the presence of freshly formed iron oxyhydroxides, much lower than in previous studies in ultrapure water. This could be caused by the adsorption of natural organic matter (NOM) on the iron oxide surfaces. In the oxygen-saturated natural water with a pH ranging from 6.5 to 7.7, Gallionella spp. grew uninhibited and biological iron oxidation was an important, and probably the dominant, process. Gallionella growth was not even inhibited in a full-scale filter after plate aeration. From this we conclude that Gallionella spp. can grow under neutral pH and fully aerated conditions when the chemical iron oxidation is retarded by low water temperature and inhibition of the autocatalytic iron oxidation.  相似文献   

15.
Modeling the PAO-GAO competition: Effects of carbon source, pH and temperature   总被引:11,自引:0,他引:11  
The influence of different carbon sources (acetate to propionate ratios), temperature and pH levels on the competition between polyphosphate- and glycogen-accumulating organisms (PAO and GAO, respectively) was evaluated using a metabolic model that incorporated the carbon source, temperature and pH dependences of these microorganisms. The model satisfactorily described the bacterial activity of PAO (Accumulibacter) and GAO (Competibacter and Alphaproteobacteria-GAO) laboratory-enriched cultures cultivated on propionate (HPr) and acetate (HAc) at standard conditions (20 °C and pH 7.0). Using the calibrated model, the effects of different influent HAc to HPr ratios (100-0, 75-25, 50-50 and 0-100%), temperatures (10, 20 and 30 °C) and pH levels (6.0, 7.0 and 7.5) on the competition among Accumulibacter, Competibacter and Alphaproteobacteria-GAO were evaluated. The main aim was to assess which conditions were favorable for the existence of PAO and, therefore, beneficial for the biological phosphorus removal process in sewage treatment plants. At low temperature (10 °C), PAO were the dominant microorganisms regardless of the used influent carbon source or pH. At moderate temperature (20 °C), PAO dominated the competition when HAc and HPr were simultaneously supplied (75-25 and 50-50% HAc to HPr ratios). However, the use of either HAc or HPr as sole carbon source at 20 °C was not favorable for PAO unless a high pH was used (7.5). Meanwhile, at higher temperature (30 °C), GAO tended to be the dominant microorganisms. Nevertheless, the combined presence of acetate and propionate in the influent (75-25 and 50-50% HAc to HPr ratios) as well as a high pH (7.5) appear to be potential factors to favor the metabolism of PAO over GAO at higher sewage temperature (30 °C).  相似文献   

16.
The occurrence and pathogenicity of vibrios in bathing water were investigated along the Conero Riviera (Adriatic Sea, Central Italy). Vibrio spp. enumeration was performed on thiosulfate-citrate-bile-salts-sucrose-agar by the membrane filter method, and identification was done through a biochemical protocol. All isolates were tested for the presence of cytotoxicity, protease, lipase, elastase, gelatinase, urease, haemolytic activity, ctx, tdh and trh genes by conventional methods. In all, 200 vibrios were isolated from 132 samples that were analysed. Vibrio harveyi and Vibrio alginolyticus were the species most frequently recovered. All strains were cytotoxic and some of them showed protease, gelatinase, lipase, elastase, urease and haemolytic activity. One isolate of V. alginolyticus and one of V. harveyi had the trh gene, while another strain of V. harveyi and one of Vibrio parahaemolyticus had the ctx gene. These results demonstrate the presence of potentially pathogenic vibrios in the Conero Riviera and the risk of infection due to bathing water exposure.  相似文献   

17.
Bacteria fate and transport within constructed wetlands must be understood if engineered wetlands are to become a reliable form of wastewater treatment. This study investigated the relative importance of microbial treatment mechanisms in constructed wetlands treating both domestic and agricultural wastewater. Escherichia coli (E. coli) inactivation, adsorption, and settling rates were measured in the lab within two types of wastewater (dairy wastewater lagoon effluent and domestic septic tank effluent). In situ E. coli inactivation was also measured within a domestic wastewater treatment wetland and the adsorption of E. coli was also measured within the wetland effluent.Inactivation of E. coli appears to be the most significant contributor to E. coli removal within the wastewaters and wetland environments examined in this study. E. coli survived longer within the dairy wastewater (DW) compared to the domestic wastewater treatment wetland water (WW). First order rate constants for E. coli inactivation within the WW in the lab ranged from 0.09 day−1 (d−1) at 7.6 °C to 0.18 d−1 at 22.8 °C. The average in situ rate constant observed within the domestic wetland ranged from 0.02 d−1 to 0.03 d−1 at an average water temperature of 17 °C. First order rate constants for E. coli inactivation within the DW ranged from 0.01 d−1 at 7.7 °C to 0.04 d−1 at 24.6 °C. Calculated distribution coefficients (Kd) were 19,000 mL g−1, 324,000 mL g−1, and 293 mL g−1 for E. coli with domestic septic tank effluent (STE), treated wetland effluent (WLE), and DW, respectively. Approximately 50%, 20%, and 90% of E. coli were “free floating” or associated with particles <5 μm in size within the STE, WLE, and DW respectively. Although 10-50% of E. coli were found to associate with particles >5 μm within both the STE and DW, settling did not appear to contribute to E. coli removal within sedimentation experiments, indicating that the particles the bacteria were associated with had very small settling velocities.The results of this study highlight the importance of wastewater characterization when designing a treatment wetland system for bacterial removal. This study illustrated the level of variability in E. coli removal processes that can be observed within different wastewater, and wetland environments.  相似文献   

18.
Cyanobacterial blooms are a frequent phenomenon in eutrophic freshwaters worldwide and are considered potential hazards to ecosystems and human health. Monitoring strategies based on conventional sampling often fail to cover the marked spatial and temporal variations in cyanobacterial distribution and fluctuating toxin concentrations inherent to cyanobacterial blooms. To deal with these problems, we employed a multi-scale approach for the study of a massive Microcystis bloom in Tajo River (Spain) utilizing 1) remote sensing techniques, 2) conventional water sampling and 3) analysis of chemotypical subpopulations. Tajo River at the study area is influenced by high temperatures waters diverted upstream from a nuclear power plant, the presence of a dam downstream and a high nutrient load, which provide optimal conditions for massive cyanobacterial proliferation. MERIS imagery revealed high Chl-a concentrations that rarely fell below 20 μg L−1 and moderate spatiotemporal variations throughout the study period (March-November 2009). Although the phytoplanktonic community was generally dominated by Microcystis, sampling points highly differed in cyanobacterial abundance and community composition. Microcystin (MC) concentrations were highly heterogeneous, varying up to 3 orders of magnitude among sampling points, exceeding in some cases WHO guideline values for drinking and also for recreational waters. The analysis of single colonies by MALDI-TOF MS revealed differences in the proportion of MC-producing colonies among points. The proportion of toxic colonies showed a highly significant linear correlation with total MC: biovolume ratio (r2 = 0.9; p < 0.001), evidencing that the variability in toxin concentrations can be efficiently addressed by simple analysis of subpopulations. We propose implementing a multi-scale monitoring strategy that allows covering the spatiotemporal heterogeneities in both cyanobacterial distribution (remote sensing) and MC concentrations (subpopulation analysis) and thereby reduce the main sources of uncertainty in the assessment of the risks associated to bloom events.  相似文献   

19.
Bioaerosols have become an increasingly important issue due to their harmful effects on human health. As the concern over airborne microorganisms grows, so does the need to develop and study efficient methods of controlling them. In this study, we designed a hybrid system involving ultraviolet (UV) irradiation and thermal energy and investigated its effects on bacterial bioaerosols, followed by a comparison with thermal energy alone and UV irradiation alone. The results show that the hybrid effect caused no variation in the shape of the normalized particle size distributions of S. epidermidis and B. subtilis bioaerosols. However, a physical transport loss of bacterial bioaerosols developed as the temperature inside the glass quartz tube increased. When bacterial bioaerosols were simultaneously exposed to UV irradiation and thermal energy for less than 1.05 s, more than 99% of S. epidermidis bioaerosols were inactivated at 120 °C with exposure to one UV lamp and at 80 °C with exposure to two UV lamps; and 93.5% and 98.5% of B. subtilis bioaerosols were inactivated at 280 °C with exposure to one and two UV lamps, respectively. Moreover, the hybrid UV-thermal stimuli significantly reduced the concentration of ozone, which is a secondary UV-induced pollutant. Our results show that to obtain the same inactivation efficiency, the hybrid UV-thermal stimuli were more efficient than thermal energy alone in terms of energy consumption and produced significantly less ozone than UV irradiation alone. The hybrid stimuli also had higher inactivation efficiency than UV alone. Therefore, these results provide valuable information for the development of new methods for controlling bioaerosols.  相似文献   

20.
T. Hidaka  T. Horie  H. Tsuno 《Water research》2010,44(8):2554-2562
A simple l-lactate fermentation of organic wastes at pH 5.5 and 55 °C under nonsterile conditions using Bacillus coagulans can be suitable for l-lactate fermentation of garbage. A mathematical model that simulated the lactate fermentation characteristics of B. coagulans was developed by focusing on the inhibitory effects of substrate, lactate (product) and NaCl, and bacterial growth. Basic fermentation experiments were performed using simple substrates to derive fundamental parameters of growth rate and inhibition effects. The model was then applied to fermentations using simple substrates and artificial kitchen garbage in order to verify its applicability. Microbial concentration, a key state variable of the model was measured using both real-time polymerase chain reaction (PCR) and traditional methods. The results of these methods were compared for experimental cases in which only soluble substrates were used. B. coagulans concentrations were suitably measured using real-time PCR, even when traditional measurement methods for microbial concentrations cannot be used. The results indicate that the developed model and biomass measurement can be used to evaluate lactate fermentations using both simple and complex substrates. These proposed methods would be useful for developing a new bacterial function-based mathematical model for more complex acid fermentations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号