首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
以吕梁的小米秆、豆秆、玉米秆、树叶和草叶5种典型农林生物质为研究对象,进行燃烧实验,用武汉天虹TH-150C型中流量大气综合采样仪对排放的烟尘进行采集。分析其碳组分(有机碳OC和元素碳EC)及水溶性无机离子,以期为颗粒物来源研究提供重要数据支撑。结果显示:5种农林生物质燃烧尘中,TC(total carbon)在颗粒物中所占比例介于62.37%~73.46%之间,碳组分是农林生物质燃烧尘的重要组成部分,其中,尤其以树叶燃烧尘中OC和EC的百分含量最大,分别达到39.78%和33.68%;生物质燃烧尘中碳组分的百分含量仅次于机动车尾气尘,但远大于煤烟尘、土壤风沙尘、建筑水泥尘和道路尘等源;OC/EC值介于1.15~1.26之间,该值可以初步用来作为判定农林生物质燃烧的一个重要指标;K+,Na+、Ca2+、Mg2+、NH4+、F-、Cl-、SO42-和NO3-等9种水溶性无机离子之和在颗粒物中所占比例介于18.22%~24.12%之间,水溶性无机离子是农林生物质燃烧尘的重要组成部分;SO42-、K+、Cl-、F-是4种最主要的水溶性性无机离子;生物质燃烧尘中K+主要以KCl的形式存在。  相似文献   

3.
The ocean plays a central role in the global carbon cycle being by far the largest active reservoir. Atmospheric CO2 level depends on the CO2concentration in the ocean surface layer, which is relatively low compared to mean oceanic values due to biological and physical carbon pumps. Although the ocean may take up much of the carbon released by the increased burning of fossil fuels, this capacity is limited because of the chemical buffering and a mismatch in time scales (oceanic mixing is much slower than anthropogenic perturbations).  相似文献   

4.
5.
According to most global climate models, a continued build-up of CO2 and other greenhouse gases will lead to significant changes in temperature and precipitation patterns over large parts of the Earth. Below-ground processes will strongly influence the response of the biosphere to climate change and are likely to contribute to positive or negative biospheric feedbacks to climate change. Current global carbon budgets suggest that as much as 2000 Pg of carbon exists in soil systems. There is considerable disagreement, however, over pool sizes and flux (e.g. CO2, CH4) for various ecosystems. An equilibrium analysis of changes in global below-ground carbon storage due to a doubled-CO2 climate suggests a range from a possible sink of 41 Pg to a possible source of 101 Pg. Components of the terrestrial biosphere could be managed to sequester or conserve carbon and mitigate accumulation of greenhouse gases in the atmosphere.  相似文献   

6.
Unusually high levels of PM10 were observed in the UK in May 2006 and September 2002. This paper investigates the possible contribution of long-range transport of smoke from widespread agricultural burning and forest fires in western Russia to these air pollution episodes. The Lagrangian dispersion model NAME is run in both forwards and backwards modes to determine the transport and sources of the polluted air masses for the two incidents. Comparison of the model results to satellite data and ground observations from across Europe demonstrates good agreement for both the timing and magnitude of the episodes and suggests that fires in western Russia were the primary cause of both incidents. Secondary contributions to the 2006 episode may have come from European anthropogenic pollution and pollen released in northern Europe. The occurrence and timing of both pollution episodes were strongly controlled by the meteorological situation at the time. Scaling of model results to observations suggests that 0.5–0.7 Mtonnes of biomass per day could have been burnt during periods when winds reaching the UK were from the east. The newly reported 2006 episode means that Russian fires have affected UK air quality at least twice since 2000 and it is suggested that, without changes in current practice, such events are likely to occur again in the future with implications for UK and European air quality.  相似文献   

7.
8.
The major organic components of smoke particles from biomass burning are monosaccharide derivatives from the breakdown of cellulose, accompanied by generally lesser amounts of straight-chain, aliphatic and oxygenated compounds and terpenoids from vegetation waxes, resins/gums, and other biopolymers. Levoglucosan and the related degradation products from cellulose can be utilized as specific and general indicator compounds for the presence of emissions from biomass burning in samples of atmospheric fine particulate matter. This enables the potential tracking of such emissions on a global basis. There are other compounds (e.g. amyrones, friedelin, dehydroabietic acid, and thermal derivatives from terpenoids and from lignin—syringaldehyde, vanillin, syringic acid, vanillic acid), which are additional key indicators in smoke from burning of biomass specific to the type of biomass fuel. The monosaccharide derivatives (e.g. levoglucosan) are proposed as specific indicators for cellulose in biomass burning emissions. Levoglucosan is emitted at such high concentrations that it can be detected at considerable distances from the original combustion source.  相似文献   

9.
Classification results using texture analysis is presented for forest fire smoke from satellite remote sensing data. Texture analysis is carried out for normalized difference images calculated from visible and thermal infrared images of the Indonesian forest fire in 1997. Smoke regions are identified by assuming threshold values for the resulting texture feature as well as for radiances in the original and difference images. It is found that when the thresholds are chosen appropriately for GMS visible and infrared spin scan radiometer, 94% pixels exhibit agreement between the classification results using the texture analysis and the supervised Euclidean classification. Agreement is found for 96% pixels in mutual verification using the VISSR image and a concurrent NOAA advanced very high resolution radiometer image. A correlation coefficient of 0.91 is obtained between the results from the two sensors in the variation of the number of smoke pixels accumulated for 12 days in September 1997. Additionally, it is confirmed that as the threshold value of the texture feature is increased, the variation range of the aerosol optical thickness is also increased. As a whole, this study indicates that texture analysis provides quite reasonable results in the smoke detection when appropriately combined with the spectral information.  相似文献   

10.
The main objective of this study was to investigate the chemical characteristics of post-harvest biomass burning aerosols from field burning of barley straw in late spring and rice straw in late fall in rural areas of Korea. A 12-hr integrated intensive sampling of particulate matter (PM) with an aerodynamic diameter less than or equal to 10 microm (PM10) and PM with an aerodynamic diameter less than or equal to 2.5 microm (PM2.5) biomass burning aerosols had been conducted continuously in Gwangju, Korea, during two biomass burning periods: June 4--15, 2001, and October 8--November 14, 2002. The fine and coarse particles of biomass burning aerosols were analyzed for mass and ionic, elemental, and carbonaceous species. The average fine and coarse mass concentrations of biomass burning aerosols were, respectively, 129.6 and 24.2 microg/m3 in June 2001 and 47.1 and 33.2 microg/m3 in October--November 2002. An exceptionally high PM2.5 concentration of 157.8 microg/m3 was observed during biomass burning events under stagnant atmospheric conditions. In the fine mode, chlorine and potassium were unusually rich because of the high content of semi-arid vegetation. Both organic carbon (OC) and elemental carbon increased during the biomass burning periods, with the former exhibiting a higher abundance. PM from the open field burning of agricultural waste has an adverse impact on local air quality and regional climate.  相似文献   

11.
To assess the contribution of sources to fine particulate organic carbon (OC) at four sites in North Carolina, USA, a molecular marker chemical mass balance model (MM-CMB) was used to quantify seasonal contributions for 2 years. The biomass burning contribution at these sites was found to be 30–50% of the annual OC concentration. In order to provide a better understanding of the uncertainty in MM-CMB model results, a biomass burning profile sensitivity test was performed on the 18 seasonal composites. The results using reconstructed emission profiles based on published profiles compared well, while model results using a single source test profile resulted in biomass burning contributions that were more variable. The biomass burning contribution calculated using an average regional profile of fireplace emissions from five southeastern tree species also compared well with an average profile of open burning of pine-dominated forest from Georgia. The standard deviation of the results using different source profiles was a little over 30% of the annual average biomass contributions. Because the biomass burning contribution accounted for 30–50% of the OC at these sites, the choice of profile also impacted the motor vehicle source attribution due to the common emission of elemental carbon and polycyclic aromatic hydrocarbons. The total mobile organic carbon contribution was less effected by the biomass burning profile than the relative contributions from gasoline and diesel engines.  相似文献   

12.
In the South of Italy, it is common for farmers to burn pruning waste from olive trees in spring. In order to evaluate the impact of the biomass burning source on the physical and chemical characteristics of the particulate matter (PM) emitted by these fires, a PM monitoring campaign was carried out in an olive grove. Daily PM10 samples were collected for 1 week, when there were no open fires, and when biomass was being burned, and at two different distances from the fires. Moreover, an optical particle counter and a polycyclic aromatic hydrocarbon (PAH) analyzer were used to measure the high time-resolved dimensional distribution of particles emitted and total PAHs concentrations, respectively. Chemical analysis of PM10 samples identified organic and inorganic components such as PAHs, ions, elements, and carbonaceous fractions (OC, EC). Analysis of the collected data showed the usefulness of organic and inorganic tracer species and of PAH diagnostic ratios for interpreting the impact of biomass fires on PM levels and on its chemical composition. Finally, high time-resolved monitoring of particle numbers and PAH concentrations was performed before, during, and after biomass burning, and these concentrations were seen to be very dependent on factors such as weather conditions, combustion efficiency, and temperature (smoldering versus flaming conditions), and moisture content of the wood burned.  相似文献   

13.
Biomass burning, in the form of savanna fires and firewood for cooking and warmth, is widespread during the dry winter months in Southern Africa. This study was carried out to investigate its impact on the environment in Gaborone, Botswana, which is a small-sized city with very little pollution from industrial sources. Measurements of aerosol size and number concentrations were carried out at the University of Botswana campus in Gaborone from September 1999 to July 2000 using two automatic laser scattering particle counters. Particles were monitored in eight size ranges from 0.1 to 5.0 μm. The mean daily particle concentrations were found to vary from about 200 cm−3 on clear visibility days during the summer to a high of over 9000 cm−3 on cold winter evenings, when there was a significant smoke haze over the city. Particle concentrations were noticeably higher during the winter than in the summer. During a typical winter day, the total particle concentration peaked between 18 and 23 h, often showing an increase of over four-fold from mid-morning minimum values. The aerosol number size distributions under various conditions were investigated and the corresponding surface area and volume distributions were derived. In general, both the surface and volume distributions were bimodal with peaks close to 0.2 μm and at 5.0 μm or greater. A hand-held counter with a minimum detectable particle size of 0.3 μm was used to monitor the size and number concentrations of aerosols across the city. The results indicate a consistent pattern of maximum concentration in the highly populated areas close to the city centre, falling significantly in the sparsely populated outlying areas by up to an order of magnitude during peak biomass burning, suggesting that much of the smoke particles in the city are removed by wind.  相似文献   

14.
15.
Boundary layer ozone and carbon monoxide were measured at a savannah site in the Orinoco river basin, during the dry and wet seasons. CO and O3 concentrations recorded around noontime show a good linear correlation, suggesting that the higher ozone levels observed during the dry season are photochemically produced during the oxidation of reactive hydrocarbons in the presence of NOx both emitted by biomass burning. The rate of photochemical ozone production in the boundary layer ozone by biomass burning calculated from the production ratio ΔO3/ΔCO (0.17±0.01 v : v) and the amount of CO produced by fires (0.26–1.3 mole m−2 dry season−1), ranges from 0.6 to 2.6 ppbv h−1 for 8 h of daylight. This O3 production rate is in fairly good agreement with the value derived from RO2 radical measurements made in the Venezuelan savannah during the dry season. The net boundary layer production of O3 from all tropical America savannah fires is estimated to range between 0.28 and 0.36 Tmol O3 per year, which is about 3 times higher than the O3 produced from pollution sources in the eastern United States during the summer. An extrapolation to all of the world's savannah would indicate a net boundary layer ozone production of about 1.2 Tmol yr−1. This is discussed in the context of the overall global budget of tropospheric ozone.  相似文献   

16.
Air particulate matter (PM) samples were collected in Singapore from 21 to 29 October 2010. During this time period, a severe regional smoke haze episode lasted for a few days (21–23 October). Physicochemical and toxicological characteristics of both haze and non-haze aerosols were evaluated. The average mass concentration of PM2.5 (PM with aerodynamic diameter of ≤2.5 μm) increased by a factor of 4 during the smoke haze period (107.2 μg/m3) as compared to that during the non-smoke haze period (27.0 μg/m3). The PM2.5 samples were analyzed for 16 priority polycyclic aromatic hydrocarbons (PAHs) listed by the United States Environmental Protection Agency and 10 transition metals. Out of the seven PAHs known as potential or suspected carcinogens, five were found in significantly higher levels in smoke haze aerosols as compared to those in the background air. Metal concentrations were also found to be higher in haze aerosols. Additionally, the toxicological profile of the PM2.5 samples was evaluated using a human epithelial lung cell line (A549). Cell viability and death counts were measured after a direct exposure of PM2.5 samples to A459 cells for a period of 48 h. The percentage of metabolically active cells decreased significantly following a direct exposure to PM samples collected during the haze period. To provide further insights into the toxicological characteristics of the aerosol particles, glutathione levels, as an indirect measure of oxidative stress and caspase-3/7 levels as a measure of apoptotic death, were also evaluated.  相似文献   

17.
Ozone peaks with mixing ratios as high as 138 ppbv were observed in the lower troposphere (2.5–4.5 km) over Hong Kong in spring. Simultaneously observed high humidity suggests that this enhanced ozone was not the result of transport from the upper troposphere. Back trajectory analysis suggests that these enhancements resulted from lateral transport. Air masses arriving at the altitude of the ozone peaks appear to have passed over continental Southeast Asia where the bulk of biomass burning occurs at this time of the year (February–April). We hypothesize that biomass burning in this region provided the necessary precursors for the observed ozone enhancement. As far as we know this is the first observation of highly enhanced ozone layers associated with biomass burning in continental Southeast Asia.  相似文献   

18.
Environmental Science and Pollution Research - Biomass burning from grassland, forests, and agricultural waste results in large amounts of gases and particles emitted to the atmosphere, which...  相似文献   

19.
Prediction of ambient carbon monoxide (CO) due to haze in the presence of transportation sources at a busy expressway site in Singapore was made using street Canyon and Gaussian line source modules of a regional-scale Indic Airviro dispersion model for the haze episodes that occurred in the years 1994 and 1997. The fleet average emission factors for each vehicle category were estimated from US EPA MOBILE 5 A guidelines as a function of speed, vehicle deterioration rates and model years. One hour CO concentrations during the non-haze period for the year 1995 were first simulated and compared with measured readings to test the accuracy of the proposed approach. The calibrated model was then used to compute hourly CO values for the 1994 and 1997 haze episodes. The difference between the modeled CO values with and without haze provided CO contribution due to haze. An analysis of CO values estimated through modeling with experimental measurements made during haze periods confirmed this unique approach to establish concentration of CO due to haze in the presence of transportation sources.  相似文献   

20.
Carbonaceous aerosols were studied at three background sites in south and southwest China. Hok Tsui in Hong Kong had the highest concentrations of carbonaceous aerosols (OC = 8.7 ± 4.5 μg/m3, EC = 2.5 ± 1.9 μg/m3) among the three sites, and Jianfeng Mountains in Hainan Island (OC = 5.8 ± 2.6 μg/m3, EC = 0.8 ± 0.4 μg/m3) and Tengchong mountain over the east edge of the Tibetan Plateau (OC = 4.8 ± 4.0 μg/m3, EC = 0.5 ± 0.4 μg/m3) showed similar concentration levels. Distinct seasonal patterns with higher concentrations during the winter, and lower concentrations during the summertime were observed, which may be caused by the changes of the regional emissions, and monsoon effects. The industrial and vehicular emissions in East, Southeast and South China, and the regional open biomass burning in the Indo-Myanmar region of Asia were probably the two major potential sources for carbonaceous matters in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号