共查询到17条相似文献,搜索用时 50 毫秒
1.
2.
3.
4.
利用多时上NOAA-AVHRR的中国归一化植被指数NDVI数据进行主成分分析,并与从NDVI派生的4个生物不数作相关分析,结果表明:主成分变换既压缩了信息,将21个月的信息主要压缩到前4个主分量,又提取了关键的变化信息,第一主分量反映基本植被覆信息,第二、第三和第四主分量反映植被季相变化信息,正是由于一年12个月的NDVI曲线反映了植被季相变化特征,使得主成分变换得到的各主分量具有一定的生物学意义,而且17种中国典型植被在这4个主分量图像上存在一定的差异性,使其具有进行较高精度土地覆盖分类的潜力。 相似文献
5.
基于Landsat TM数据的潮白河流域植被覆盖变化研究 总被引:5,自引:0,他引:5
使用经严格配准的同一时间(1991年和2002年)Landsat TM图像数据,编制归一化植被指数(NDVI)图,进而计算生成植被覆盖度图像。通过掩膜技术和变化检测等提取了北京潮白河流域中上游地区从1991~2002年的植被覆盖变化信息。研究结果表明,北京潮白河流域中上游地区11年间植被退化的总面积为1635.3km^2,占该区域总面积的30.6%;其中植被覆盖度为40%~50%的类型退化的面积最多,为411.74km^2,变化率为66.0%,覆盖度为90%~100%的类型退化的面积最少,为14km^2,变化率为4.4%;覆盖度为30-40%的类型变化率最大,为100%,覆盖度为90%~100%的类型的变化率最小。为4.4%;从植被覆盖度变化的趋势来看,随着植被覆盖度的增加,变化率在逐渐降低;流域中游、密云水库北部和东北部以及上游的河谷地带由于受人类活动干扰的强度较大,植被退化较严重;而上游的山地区域由于人类活动干扰较少,再加上近年来采取封山育林、植树造林等措施,植被覆盖程度有所改善。 相似文献
6.
NOAA/AVHRR数据的雪盖信息提取与复合 总被引:2,自引:0,他引:2
在对NOAA/AVHRR数据特征与雪冰波谱特性分析的基础上,对各种提取雪盖信息的方法进行了比较,指出了各种方法的优劣,认为在实时的雪灾监浏与评估系统中,直方图分割的方法快速有效。另一方面,通过雪盖影像与GIS中各种矢量图形的复合配准实验,指出宜先对AVHRR影像进行点位计算,然后利用控制点、进行精校正,所产生的图像才能达到与矢量图形的准确配准。 相似文献
7.
基于NOAA/AVHRR热红外数据的城市热岛强度年内变化特征 总被引:3,自引:1,他引:3
采用ENVI/IDL编程技术,实现NOAA/AVHRR数据的校准、几何纠正、云污染识别与剔除、影像特征统计与输出等过程的批处理自动化操作。并以济南市中心城区为例,通过2005~2006年间获取的白天NOAA/AVHRR影像热红外波段调查了济南市区城市热岛强度的年内变化规律与过程。研究结果表明:① 济南市区全年大部分时间存在热岛现象,4~9月份城市热岛效应较为明显,尤以5、7、8月为甚。② 全年城市热岛平均强度2.77℃,最强的热岛效应出现于7月下旬至8月中旬间。③ 从季节分布来看,济南市区夏季热岛效应最明显,春季次之,秋、冬两季较弱。④ 城市热岛强度与城、郊地表温度存在正相关关系,但相关程度较差。 相似文献
8.
森林过火面积的遥感测算方法 总被引:16,自引:0,他引:16
根据对近年来多次特大森林火灾和相应的气象卫星资料的分析,提出利用NOAA/AVHRR数据测算森林大火的过火面积的四种方法,即灰度修正像元法、植被修正像元法、坐标法和蔓延法。在GIS地面信息数据库支持下,利用这4种方法能准确、快速地计算出过火面积。经今春应急评估试运行验证,森林大火过火面积测算精度达90%。 相似文献
9.
以浙江省为试验区,在地理信息系统支持下综合利用多种地理信息,探讨丘陵地区大面积提取水稻种植面积信息的可行性。开展了分类识别方法的比较试验及训练样点相对稳定性试验。针对丘陵地区的复杂地形,在数字化地形图的基础上,建立数字地形模型(DTM),并衍生出地面坡度等地貌因子的数字化图像,结合NOAA/AVHRR数据,进行分类。试验结果表明,传统的分类识别方法中,最大似然法的分类精度可满足业务化运行的要求;建立在混合像元分解基础上的模糊监督分类,有较高的分类精度和较好的稳定性,具有较强的适应性;地貌因子参与遥感影像的分类,不仅可以有效地提高丘陵地区水稻种植面积信息的提取精度,而且还可以使面积信息提取精度保持一定的稳定性,提高空间精度;为探讨丘陵地区水稻种植面积信息遥感提取的可靠性和客观性,在训练样点保持相对稳定的前提下,对1996年和1997年浙江省水稻种植面积进行测算,两年的数量精度均在92%以上。 相似文献
10.
植被净第一生产力(NPP)作为反映植被固碳能力的重要指标,在全球CO2浓度上升的背景下,成为研究全球及区域生态系统对气候环境变化响应的热点之一。基于Landsat TM/ETM+遥感影像数据,采用改进的CASA模型,估算得到武汉市2001~2010年空间分辨率为30m的冬季NPP,并对其进行时空变化分析。研究结果表明:武汉市过去10a冬季平均NPP为8.55gC/m2·m。2001~2010年武汉市冬季NPP整体呈现波动上升的趋势,各区域具有不同的增长速率,其中以江夏区最快,而各植被类型中灌木林具有最快的增长速率和最高的平均NPP。武汉市冬季NPP均呈现从三环区域向四周增大的空间分布特征,过去10a武汉市冬季NPP最高的区域由黄陂区转移到了江夏区。 相似文献
11.
During the last few decades, many regions have experienced major land use transformations, often driven by human activities. Assessing and evaluating these changes requires consistent data over time at appropriate scales as provided by remote sensing imagery. Given the availability of small and large-scale observation systems that provide the required long-term records, it is important to understand the specific characteristics associated with both observation scales. The aim of this study was to evaluate the potentials and limits of remote sensing time series for change analysis of drylands. We focussed on the assessment and monitoring of land change processes using two scales of remote sensing data. Special interest was given to the influence of the spatial and temporal resolution of different sensors on the derivation of enhanced vegetation related variables, such as trends in time and the shift of phenological cycles. Time series of Landsat TM/ETM+ and NOAA AVHRR covering the overlapping time period from 1990 to 2000 were compared for a study area in the Mediterranean. The test site is located in Central Macedonia (Greece) and represents a typical heterogeneous Mediterranean landscape. It is undergoing extensification and intensification processes such as long-term, gradual processes driven by changing rangeland management and the extension of irrigated arable land. Time series analysis of NOAA AVHRRR and Landsat TM/ETM+ data showed that both sensors are able to detect this kind of land cover change in complementary ways. Thereby, the high temporal resolution of NOAA AVHRR data can partially compensate for the coarse spatial resolution because it allows enhanced time series methods like frequency analysis that provide complementary information. In contrast, the analysis of Landsat data was able to reveal changes at a fine spatial scale, which are associated with shifts in land management practice. 相似文献
12.
南方丘陵地区水稻种植面积遥感信息提取的可行性分析* 总被引:4,自引:0,他引:4
以浙江省为试验区,在地理信息系统支持下综合利用多种地理信息,探讨丘陵地区大面积提取水稻种植面积信息的可行性。开展了分类识别方法的比较试验及训练样点相对稳定性试验。针对丘陵地区的复杂地形,在数字化地形图的基础上,建立数字地形模型(DTM),并衍生出地面坡度等地貌因子的数字化图像,结合NOAA/AVHRR数据,进行分类。试验结果表明,传统的分类识别方法中,最大似然法的分类精度可满足业务化运行的要求;建立在混合像元分解基础上的模糊监督分类,有较高的分类精度和较好的稳定性,具有较强的适应性;地貌因子参与遥感影像的分类,不仅可以有效地提高丘陵地区水稻种植面积信息的提取精度,而且还可以使面积信息提取精度保持一定的稳定性,提高空间精度;为探讨丘陵地区水稻种植面积信息遥感提取的可靠性和客观性,在训练样点保持相对稳定的前提下,对1996年和1997年浙江省水稻种植面积进行测算,两年的数量精度均在92%以上。 相似文献
13.
A method to convert AVHRR Normalized Difference Vegetation Index time series to a standard viewing and illumination geometry 总被引:1,自引:0,他引:1
The bi-directional reflectance distribution function (BRDF) alters the seasonal and inter-annual variations exhibited in Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) data and this hampers the detection and, consequently, the interpretation of temporal variations in land-surface vegetation. The magnitude and sign of bi-directional effects in commonly used AVHRR data sets depend on land-surface properties, atmospheric composition and the type of atmospheric correction that is applied to the data. We develop an approach to estimate BRDF effects in AVHRR NDVI time series using the Moderate Resolution Imaging Spectrometer (MODIS) BRDF kernels and subsequently adjust NDVI time series to a standard illumination and viewing geometry. The approach is tested on NDVI time series that are simulated for representative AVHRR viewing and illumination geometry. These time series are simulated with a canopy radiative transfer model coupled to an atmospheric radiative transfer model for four different land cover types—tropical forest, boreal forest, temperate forest and grassland - and five different atmospheric conditions - turbid and clear top-of-atmosphere, turbid and clear top-of-atmosphere with a correction for ozone absorption and Rayleigh scattering applied (Pathfinder AVHRR Land data) and ground-observations (fully corrected for atmospheric effects). The simulations indicate that the timing of key phenological stages, such as start and end of growing season and time of maximum greenness, is affected by BRDF effects. Moreover, BRDF effects vary with latitude and season and increase over the time of operation of subsequent NOAA satellites because of orbital drift. Application of the MODIS kernels on simulated NVDI data results in a 50% to 85% reduction of BRDF effects. When applied to the global 18-year global Normalized Difference Vegetation Index (NDVI) Pathfinder data we find BRDF effects similar in magnitude to those in the simulations. Our analysis of the global data shows that BRDF effects are especially large in high latitudes; here we find that in at least 20% of the data BRDF errors are too large for accurate detection of seasonal and interannual variability. These large BRDF errors tend to compensate, however, when averaged over latitude. 相似文献
14.
基于地表能量平衡理论,利用NOAA/AVHRR数据,采用SEBS模型,计算了研究区15年地表蒸散量,从年、季度和月等三个时间尺度对其进行时空变化分析。结果显示:(1)各年平均蒸散量相差较大,最大的是1988年,最小的是1996年;月平均蒸散量最大值出现在5月,最小值出现在12月,形成一单峰型曲线;第二季度平均蒸散量最大,第四季度最小,其分布曲线也为单峰型。(2)多年平均蒸散量的空间分布东半部明显大于西半部,最大的是扶余县,最小的是通榆县;各市县的月平均蒸散量分布仍为单峰型曲线,在5月达到最大值,12月最小,与全区的月平均蒸散量分布曲线一致;各市县第一季度和第四季度平均蒸散量相差不大,第二和第三季度相差较大,但总体分布趋势与全区一致,仍为单峰型曲线。以上结果表明:研究区区域蒸散时空分布极不均匀,强烈的蒸散作用为研究区生态环境恶化提供了有利条件。 相似文献
15.
16.
17.
Atmospheric conditions for monitoring the long-term vegetation dynamics in the Amazon using normalized difference vegetation index 总被引:4,自引:0,他引:4
This study examined the effect of biomass-burning aerosols and clouds on the temporal dynamics of the normalized difference vegetation index (NDVI) exhibited by two widely used, time-series NDVI data products: the Pathfinder AVHRR land (PAL) dataset and the NASA Global Inventory Monitoring and Modeling Studies (GIMMS) dataset. The PAL data are 10-day maximum-value NDVI composites from 1982 to 1999 with corrections for Rayleigh scattering and ozone absorption. The GIMMS data are 15-day maximum-value NDVI composites from 1982 to 1999. In our analysis, monthly maximum-value NDVI was extracted from these datasets. The effects were quantified by comparing time-series of NDVI from PAL and GIMMS with observations from the SPOT/VEGETATION sensor and aerosol index data from the Total Ozone Mapping Spectrometer (TOMS), and results from radiative transfer simulation. Our analysis suggests that the substantial large-scale NDVI seasonality observed in the south and east Amazon forest region with PAL and GIMMS is primarily caused by variations in atmospheric conditions associated with biomass-burning aerosols and cloudiness. Reliable NDVI data can be typically acquired from April to July when such effects are relatively low, whereas there is a few effective NDVI data from September to December. In the central Amazon forest region, where aerosol loads are relatively low throughout the year, large-scale NDVI seasonality results primarily from seasonal variations in cloud cover. Careful treatment of these aerosol and cloud effects is required when using NDVI from PAL and GIMMS (or other source) to determine large-scale seasonal and interannual dynamics of vegetation greenness and ecosystem-atmosphere CO2 exchange in the Amazon region. 相似文献