首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
内蒙古苏里格甲醇厂一套天然气制甲醇合成气的装置原采用一段外热蒸汽转化工艺.甲醇生产能力为18×10^4t/a。与外加热蒸汽转化工艺相比,轻烃自热转化大约用1m^3 O2可替代0.5m^3 CH4,采用天然气纯氧自热转化制甲醇合成气的两段转化工艺(增设二段炉)进行改造,可增加甲醇生产能力15×10^4t/a,配套改造投产后甲醇生产能力可达到33×10^4t/a,改造后生产甲醇的天然气消耗量由1100m^3/t(标准)下降为960m^3/t(标准)。所用自热转化工艺采用多气流转化炉与低温混合喷射外燃式烧嘴配套的创新技术,该技术的成功应用,达到了节气12.7%、增产83.3%的目的。采用该新工艺生产甲醇合成气可节省原料天然气20%~30%,减排CO2 70%~95%。  相似文献   

2.
天然气三一段纯氧转化制合成气新工艺中,外加热蒸汽转化工艺段承担10%~15%的CH4负荷,用于为开车和保障自热部分氧化提供较高温度的一段转化气(〉650℃);其余85%~90%的CH4负荷由换热转化工艺段和二段炉纯氧自热转化工艺段承担。所用的换热转化工艺,将传统的两段蒸汽转化工艺加热用的占天然气总耗量1/5~1/4的燃料天然气省下用作原料,从而使每吨合成氨的天然气耗量从传统的两段蒸汽转化的1000m^3(标准)降到800~850m^3(标准)。三一段纯氧转化制合成气新工艺比传统一段外加热蒸汽转化工艺可减少85%~90%的燃料气,同时降低相应的CO2排放。从开车到投产所需的时间为6~8d,大大缩短了开车周期。介绍了用该新工艺对我国天然气生产合成氨装置进行扩建改造的工程设计方案,以及天然气三一段转化等压一次变换制氨联产尿素的生产设计方案。  相似文献   

3.
天然气制甲醇原料合成气生产技术经历了常压工艺和加压工艺,现在已发展到高压转化工艺。同时实现了天然气与空气中提取的纯氧在5.5~8.5MPa压力下的自热转化工艺。而甲醇合成工艺的合成压力则从30MPa降到5~8MPa。因此采用自热转化工艺用天然气制取的合成气可在等压下合成甲醇,这样可省去动力巨大的合成气压缩机,并将自热转化气与甲醇合成副产的蒸汽分级利用。这是天然气(或页岩气)制合成气生产甲醇的创新生产技术。该技术甲醇原料单耗低[800m~3/t(标准)]、不耗电、不排放CO_2。用该创新技术改造内蒙古博源联化的大型系列化210×10~4t/a甲醇装置,再加工成80×10~4t/a乙丙烯,成为我国重化工工业结构调整、绿色发展、创新发展的示范技术。博源联化经技术改造建成天然气为原料的节气减排CO_2的210×10~4t/a甲醇(4套合计),用其中200×10~4t/a加工生产80×10~4t/a(2套40×10~4t/a装置)乙、丙烯的特大型天然气甲醇乙烯化工基地。基地年总用天然气17×10~8m~3/a,用水电10×104k W·h,乙、丙烯年总产值约64亿元,利税约21.4亿元,总投资约80亿元,投产后4年左右可回收投资。产品乙、丙烯再综合利用深度加工,产值还可翻番,投入产出比为1∶0.80。该技术改造项目的建成投产将推动我国潜在天然气、页岩气、煤层气等资源的开发利用,具有广泛的示范作用。  相似文献   

4.
山西沁水煤层气生产30×10^4t/a二甲醚项目工艺设计   总被引:2,自引:0,他引:2  
介绍了山西沁水利用煤层气经三一段纯氧转化制甲醇再生产30×10^4t/a二甲醚项目的概况。重点介绍了该项目采用的我国最近开发的煤层气三一段纯氧转化制甲醇创新工艺,采用该工艺同量原料比传统一段转化工艺可增产35%,减排CO285%-90%,生产1t二甲醚的煤层气消耗量仅为1082m3。项目设计推荐购买美国GGG厂大型甲醇闲置设备进行改造的方案。经测算,采用以上方案建设这样一个项目,投资为6.2亿元,可创产值12亿元(以每吨二甲醚4000元计),年利税5.84亿元,投资回收期约为1年。  相似文献   

5.
甲醇合成气的制取与等压合成创新工艺的发展前景   总被引:2,自引:2,他引:0  
介绍了甲醇合成工艺的进展,指出现代工业生产采用压力为5MPa的高压造气等压合成甲醇工艺,分析了合成气对甲醇合成的影响。重点阐述了轻烃转化制甲醇合成气的创新工艺——三一段(即外热蒸汽转化、换热转化和自热转化)纯氧转化工艺的特点、原理、工艺流程及主要物耗能耗指标,并与传统工艺进行了对比。举例说明了高压合成气等压合成甲醇技术的推广应用。最后对我国煤炭能源化工综合发展的产品开发和规划框架提出了建议。  相似文献   

6.
介绍了山西沁水利用煤层气经三一段纯氧转化制甲醇再生产30×10^4t/a二甲醚项目的概况。重点介绍了该项目采用的我国最近开发的煤层气三一段纯氧转化制甲醇创新工艺,采用该工艺同量原料比传统一段转化工艺可增产35%,减排CO285%-90%,生产1t二甲醚的煤层气消耗量仅为1082m3。项目设计推荐购买美国GGG厂大型甲醇闲置设备进行改造的方案。经测算,采用以上方案建设这样一个项目,投资为6.2亿元,可创产值12亿元(以每吨二甲醚4000元计),年利税5.84亿元,投资回收期约为1年。  相似文献   

7.
四川广元市苍溪利用超大储量天然气田的优势可发展天然气化工基地。乙烯生产工艺路线有石油乙烯路线即石脑油裂解制乙烯、煤制甲醇生产烯烃路线和天然气制甲醇生产烯烃路线。石油制烯烃路线需与大炼厂相结合,工艺流程及环境治理复杂,设备多造成投资费用大、能耗高,而且原料石油价格昂贵。乙烯生产由石油乙烯向天然气或煤炭制甲醇生产乙烯转变已成为今后的工艺技术发展方向。四川广元市苍溪天然气化工基地规划方案为:建天然气为原料制50×104t/a甲醇的装置共4套(共生产甲醇200×104t/a),天然气制甲醇生产乙、丙烯40×104t/a的装置共两套(共产乙、丙烯80×104t/a)。基地总年用天然气16×108m3/a,用电10×104kW,总投资约100亿元,总年产值约92亿元,利税约26.5亿元。甲醇生产采用国内开发已成功用于大规模生产的节气减排CO2的二段炉纯氧自热转化合成甲醇工艺;甲醇脱水制乙、丙烯技术也采用国内开发已实现工业化生产的新工艺。规划设计采用的工艺技术先进、能耗低、投资省、效益好、天然气中碳元素充分利用。天然气制乙、丙烯的生产成本比以石油为原料的低,且无环境污染,产品有竞争力。  相似文献   

8.
某单位制氢装置于2004年由3×10^4t/a甲醇装置改建而成,以天然气或乙烯裂解出甲烷富气为原料,采用烃类蒸汽转化、等温变换、变压吸附技术,氢气产量1.5×10^4m^3/h,外供炼油厂加氢裂化装置。为防止转化催化剂和中变催化剂(铜系)中毒,在原料预热段设有脱硫槽和脱氯槽,保证转化气净化度。  相似文献   

9.
我国轻烃资源丰富,是制氨、尿素与甲醇的主要原料。我国现年产合成氨和甲醇近3000×104t,耗用轻烃(折CH4计)近300×108m3/a,大都采用外燃蒸汽转化,其中包括用干燃料的轻烃约100×108m3/a,并燃烧排放出CO2达2000×104t/a。采用我国成功开发的纯氧自热转化替代外燃蒸汽转化,用2m3O2可替代出燃料1m3CH4,免除产生CO2排放2kg/m3CH4,同时将节省下来的轻烃燃料作原料用可增产30%。与外燃蒸汽转化相比,新工艺原料消耗可降低20%~30%,甲醇合成能力可提高20%~100%,减排CO220%~80%,而且新工艺的转化炉体积小、造价低、省去了耐高温贵镍合金材料、使用寿命长。我国近3000×104t/a轻烃制氨、甲醇生产厂,如果应用此新工艺替代传统外燃蒸汽转化工艺,每年可节省轻烃燃料约100×108m3,可用于增产氨、甲醇125×104t/a,减排CO22000×104t/a。我国若在四川苍溪,采用纯氧自然转化、无CO2排放的等压合成甲醇转化制乙烯工艺,建设2×50×104t/a乙、丙烯基地,仅耗用天然气20×108m3/a。  相似文献   

10.
卜阙 《中外能源》2008,13(2):104-104
由青海中浩天然气化工有限公司投资15.7亿元建设的年产60×10^4t甲醇项目主装置区建设已经开工.整个项目将于2009年10月建成投产,为大规模利用柴达木盆地丰富的天然气资源奠定了基础。随着该项目的建成投产,加上格尔木炼油厂已有的40×10^4t甲醇年生产能力,届时,格尔木将拥有100×10^4t甲醇年生产能力,柴达木盆地丰富的天然气资源将会转化为可观的经济效益。  相似文献   

11.
The auto-thermal reforming (ATR) performance of diesel blended with biodiesel (e.g., B5, B10, B20, B40, and B80) was investigated and compared to pure diesel and biodiesel ATR in a single-tube reformer with ceramic monolith wash-coated rhodium/ceria–zirconia catalyst. The initial operating condition of the ATR of all studied fuels was set as total moles of oxygen from air, water, and fuel per mole of carbon (O/C) = 1.47, moles of water to carbon (H2O/C) = 0.6, and gas hourly space velocity = 33,950 h−1 at 1223 K reformer temperature, to achieve the same syngas (H2 + CO) production rate. A direct photo-acoustic micro-soot meter was applied to quantify the dynamic evolution of carbon formation and a mass spectrometer was used to measure the gas composition of reformer effluents. The blends with more biodiesel content were found to have a lower syngas production rate and reforming efficiency, and require more air and higher reformer temperature to avoid carbon formation. Strong correlations between ethylene and solid carbon concentration were observed in the reformation of all the fuels and blends, with more biodiesel content tending to have higher ethylene production. This study is one component of a three-part investigation of bio-fuel reforming, also including fuel vaporization and reactant mixing (Part 1) and biodiesel (Part 2).  相似文献   

12.
煤制油与煤气化制甲醇技术的比较与选择   总被引:1,自引:1,他引:0  
煤炭液化制油技术投资大、煤耗高、耗水多、污染严重,以目前的技术水平,生产1t油往往需要4~5t煤,折算其热能利用率为50%,若按南非的煤耗(6t)计,其热能利用率仅为33.3%。改用煤炭气化制甲醇技术,采用6MPa纯氧高压气化制合成气(CO+H2),合成气可产双倍的甲醇,则1t甲醇的煤耗仅为1.3~1.5t,甲醇用作汽车发动机燃料时,以1.3~1.5t甲醇相当于1t汽油作功计算,则煤炭的热能利用率可以达到66%~76%。如果配套水电解制氢技术,还可以实现CO2的零排放。中国每年有20×10^8t的煤炭产量,如果将其中的12×10^8t纳入煤炭气化制甲醇产业链,可每年创造产值约2.67万亿元,可减排CO2约30×10^8t。  相似文献   

13.
The performance of the CO preferential oxidation (PROX) process was compared with the CO selective methanation (SMET) one, both applied as the last clean-up process step of a fuel processor unit (FPU) to remove CO from syngas. The FPU was completed with the reformer (autothermal reformer ATR or steam reformer SR) and a non-isothermal water gas shift (NI-WGS) reactor. Furthermore, the reforming of different hydrocarbon fuels, among those most commonly found in service stations (gasoline, light diesel oil and compressed natural gas) was examined. The comparison, in terms of different FPU configurations and fuels, was carried out by a series of steady-state system simulations in Aspen Plus®. From the obtained data, the performance of CO-PROX was not very different from that of CO-SMET, making it complex to give a definitive answer on the best FPU scheme. The most promising fuel processor with respect to performance is a chain of ATR, NI-WGS and CO-SMET. However, maintaining the same chain of clean-up reactors, the FPU with SR instead of ATR could also be a satisfactory choice. Even if there are lower efficiencies and H2 specific production compared to the ATR-based FPU, the SR-based one does not produce a syngas with the high N2 concentration typical of the ATR-based FPU. The syngas dilution by nitrogen is somehow detrimental for the stack efficiency, when syngas feeds PEM-FCs, since it lowers the polarization curve.  相似文献   

14.
雅克拉集气处理站是中国石化雅克拉-大涝坝气田地面建设项目的重要组成部分,是集天然气处理、凝析油稳定和轻烃回收为一体的综合性凝析气处理站,于2005年11月建成投产,设计天然气处理量为260×104m3/d,凝析油处理量为17×104t/a。雅克拉集气处理站使用3台美国库伯公司生产的CFA34型稳定气压缩机组,设计机组额定一级排量490m3/h,二级排量750m3/h,三级排量2000m3/h;设计一级工作压力0.7MPa,二级工作压力2.3MPa,三级工作压力6.7MPa。压缩机采用三级压缩,冷却方式为空冷,各级压缩天然气共同进入空冷器进行冷却。针对稳定气压缩机空冷器电机调速恒定造成的不利影响,实施压缩机空冷器变频改造,有效解决了3台压缩机空冷器存在的安全隐患、电能浪费和产品收率下降等各类问题,实现了机组的平稳高效运行,提升了气体处理装置运行时效,节约了电能,降低了人员劳动强度。建议这一技术在同类油田企业推广应用。  相似文献   

15.
Autothermal reforming of methane to synthesis gas: Modeling and simulation   总被引:1,自引:0,他引:1  
Autothermal reforming (ATR), that is the combination of non-catalytic partial oxidation and adiabatic steam reforming, is an important process to produce synthesis gas (syngas) from natural gas. The main scope of this work is proposing a mathematical model considering an autothermal reformer consisting of two distinct sections; a combustion section and a catalytic bed section. In the combustion section, temperature and composition were predicted using 108 simultaneous elementary reactions considering 28 species. The results were considered as initial conditions for the catalytic bed section. A one-dimensional heterogeneous reactor model was used for kinetic simulation of the second section. Results of the model were compared by ATR process published data.  相似文献   

16.
Methane reforming is the most important and economical process for hydrogen and syngas generation. In this work, the dynamic simulation of methane steam reforming in an industrial membrane reformer for synthesis gas production is developed. A novel deactivation model for commercial Ni-based catalysts is proposed and the monthly collected data from an existing reformer in a domestic methanol plant is used to optimize the model parameters. The plant data is also employed to check the model accuracy. It was observed that the membrane reformer could compensate for the catalyst deactivating effect.In order to assure the long membrane lifetime and decrease the unit price, the membrane reformer with 5 μm thick Pd on stainless steel supports is modeled at the temperature below the maximum operating temperature of Pd based membranes (around 600 °C). The dynamic modeling showed that the methane conversion of 76% could be achieved at a moderate temperature of 600 °C for an industrial membrane reformer. The cost-effective generation of syngas with an appropriate H2/CO ratio of 2.6 could be obtained by membrane reformer. This is while the conventional reformer exhibits a maximum conversation of 64 at 1200 °C challenging due to its high syngas ratio (3.7). On the other hand, the pure hydrogen from membrane reformer can supply part of the ammonia reactor feed in an adjacent ammonia plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号