首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel biodegradable thermoplastic elastomer based on epoxidized natural rubber (ENR) and poly(butylene succinate) (PBS) blend was prepared by a simple blend technique. Influence of blend ratios of ENR and PBS on morphological, mechanical, thermal and biodegradable properties were investigated. In addition, chemical interaction between ENR and PBS molecules was evaluated by means of the rheological properties and infrared spectroscopy. Furthermore, the phase inversion behavior of ENR/PBS blend was predicted by different empirical and semi-empirical models including Utracki, Paul and Barlow, Steinmann and Gergen models. It was found that the co-continuous phase morphology was observed in the blend with ENR/PBS about 58/42 wt% which is in good agreement with the model of Steinmann. This correlates well to morphological and mechanical properties together with degree of crystallinity of PBS in the blends. In addition, the biodegradability was characterized by soil burial test after 1, 3 and 9 months and found that the biodegradable ENR/PBS blends with optimum mechanical and biodegradability were successfully prepared.  相似文献   

2.
The present article summarizes the development of poly(butylene adipate-co-terephthalate) (PBAT) and organically modified layered silicates nanocomposite using a co-rotating twin screw extruder having a blown film unit. Wide angle X-ray diffraction (WAXD) studies indicated an increase in d spacing of the nanoclays in the bio-nanocomposite hybrids revealing formation of intercalated morphology. Transmission Electron Microscopy (TEM) also confirmed presence of partially exfoliated clay galleries as well as layers of intercalated structures within the PBAT matrix in the nanocomposite. Mechanical tests showed that the nanocomposite hybrids prepared using B109 nanoclay exhibited higher tensile modulus. Functionalization of PBAT matrix upon grafting with maleic anhydride (MA) resulted in further improvement in mechanical properties. The existence of interfacial bonds in grafted bio-nanocomposite hybrids are substantiated using FTIR spectroscopy. Thermal properties of nanocomposite hybrids employing DSC, TGA also revealed improved Tg, Tc and thermal stability over the virgin polymer. Dynamic Mechanical Analysis (DMA) indicated an increase of storage modulus (E′) of PBAT biopolymer with incorporation of nanofiller. The biodegradability of PBAT bionanocomposite hybrids showed an increase in the rate of biodegradability with addition of Na+MMT due to hydrophilic nature of the nanoclay.  相似文献   

3.
Poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) are biodegradable polyesters and can be blended by twin-screw extrusion. Epoxy-functional styrene acrylic copolymer (ESA) was used as reactive agent for PLA/PBAT blends and the mechanical properties, phase morphology, thermal properties, melt properties, and melt rheological behaviors of the blends were investigated. During thermal extrusion, ESA was mainly a chain extender for the PLA matrix but had no evident reaction with PBAT. The great improvement in the toughness of PLA based blends was achieved by the addition of PBAT of no less than 15 wt% and that of ESA of no more than 0.5 wt%. Although SEM micrographs and the reduced deviation of the terminal slope of G′ and G″ indicated better compatibility and adhesion between the two phases, the blend with ESA was still a two-phase system as indicated in DSC curves. Rheological results reveal that the addition of ESA increased the storage modulus (G′), loss modulus (G″) and complex viscosity of the blend at nearly all frequencies. The melt strength and melt elasticity of the blend are improved by addition of ESA.  相似文献   

4.
Melt extrusion was used to obtain thermoplastic corn gluten meal (tCGM) blends from plasticized corn gluten meal (pCGM) and poly(butylene adipate-co-terephthalate) (PBAT). Dynamic rheological tests, morphology and spectroscopy were employed to understand the effect of the plasticization and destructurization of corn gluten meal (CGM) on tCGM blends. Rheological data showed a plateau in the low frequencies for tCGM blends demonstrating network formation which responds elastically over long timescales. Also, complex viscosity data showed the existing of shear thinning for PBAT and PBAT–CGM blend. Furthermore, rheology and morphology showed the synergistic influence of plasticization and destructuralization of CGM on the phase structure development of the blends. In addition, it was found for unmodified CGM–PBAT blend there was significant frequency dependence for G′ indicating it just acted as filler for PBAT matrix. FTIR studies showed that the urea has helped in unfolding the corn protein and facilitated hydrogen bonding interactions with PBAT. Tensile properties showed an improvement in tCGM blends when compared unmodified CGM blend. Tensile strength of tCGM blends was almost same as that of the neat PBAT matrix. Percent elongation, a strong reflection of the state of interface in the blends has showed higher values, indicating strong interactions between the PBAT and pCGM in the blend system.  相似文献   

5.
Soy meal, a co-product of the soy oil-based biodiesel industry, has up to 50 % protein content. The main aim of this work was to develop value-added application for soy meal. Soy meal was plasticized by glycerol and water, denatured by the addition of guanidine hydrochloride (GHCl), and then blended with poly (butylene adipate-co-terephthalate) (PBAT), petroleum based tough biodegradable polymer. Characterization by FTIR spectroscopy confirmed that soy meal was plasticized and denatured. The blends of PBAT/soy meal (SM), PBAT/plasticized soy meal and PBAT/GHCl modified plasticized soy meal (mPSM) were fabricated by industry prevalent extrusion and injection molding process. The developed bioblends were characterized by thermal and mechanical testing. One of the important outcomes of this research was that elongation of the bioblend was found to increase by 80 % after plasticization and denaturation of soy meal. Scanning electron microscope analysis showed that PBAT/mPSM blends have smoother surfaces and better internal structures than the other two.  相似文献   

6.
Poly(butylene succinate) (PBS) was melt blended with glycerol based polyesters (PGS) synthesized from pure and technical glycerol aiming to improve the impact strength of PBS. It was found that after addition of 30 wt% PGS to PBS its impact strength was significantly increased by 344% (from 31.9 to 110 J/m) and its elongation at break was maintained at 220%. Infrared spectra of the blends showed the presence of hydroxyl groups from the PGS phase suggesting that hydrogen bonding between the phases could be responsible for a good stress transfer and an efficient toughening in the PBS/PGS blends. Scanning electron microscopy imaging showed a good dispersion of PGS phase into PBS with a PGS particle size of 10 μm and less and no agglomeration. Addition of PGS to PBS was shown to be an effective strategy for improvement of PBS impact resistance without serious detrimental effects on its thermal and rheological properties.  相似文献   

7.
8.
Biodegradable nanocomposites based on poly(butylene succinate)/organoclay   总被引:2,自引:0,他引:2  
In this work, we try to incorporate the inorganic system into the biodegradable polymers to compose an organic/inorganic polymer hybrid. Various nanocomposites of poly(butylene succinates) (PBS) with different ratios of organically modified layered silicates (OMLS) prepared by solution blending were investigated. The OMLS used for the preparation of nanocomposites were functionalized ammonium salts modified montmorillonite. The effects of OMLS on the nanocomposites were investigated by XRD, TEM, DMA and TGA in the aspect of the d-spacing of clay, mechanical and thermal properties. Interestingly, all these nanocomposites exhibited improved properties when compared with the pristine PBS sample. XRD indicates that the layers of clay were intercalated by the modifiers, and the interlayer distance of organoclay in the nanocomposites could be extended to about 29.4 Å. Moreover, the thermal stability of the nanocomposites was enhanced by the addition of organoclay via TGA study, closely related to the organoclay content in the PBS matrix. DMA data shows that the storage and loss moduli were concurrently enhanced by the addition of organoclay as compared to the pristine PBS sample. Moreover, the glass transition temperatures also increased about 5 to 20 °C (from DMA, peak of tanδ) for the various organoclay-containing samples. The enhanced mechanical and thermal properties can be achieved from these organoclay modified-nanocomposites.  相似文献   

9.
Poly(lactic acid) (PLA) has been modified using twin-screw reactive extrusion to improve its melt properties and crystallinity. In this work lauroyl peroxide was used as an alkyl free radical source, abstracting hydrogen atoms from the PLA backbone leading to branching and chain extension reactions. Once the linear viscoelastic region was determined for these polymers, changes in dynamic rheology (dynamic viscosity real and loss modulus) were measured. Gel permeation chromatography showed that the molecular weight and polydispersity increased to a maximum with the addition of 1.00 and 0.50?wt% peroxide, respectively. Low temperature ?? transitions in dynamical mechanical thermal traces gave further evidence that branching had also occurred. G?ttfert Rheotens measurements showed a three fold increase in melt strength due to both increased chain length and branching. Thermal analysis showed the level of crystallisation had decreased also possibly due to branching. Reductions in crystallinity and improved melt strength are known to be critical for film and foam formation.  相似文献   

10.
This study investigates the processability and biodegradability of composite bioplastic materials. Biocomposites were processed using twin-screw compounding of the bioplastic poly(butylene succinate) (PBS) with bio-based fillers derived from co-products of biofuel production. An extensive biodegradability evaluation was conducted on each biocomposite material, as well as the base materials, using respirometric testing to analyze the conversion of organic carbon into carbon dioxide. This evaluation revealed that the presence of meal-based fillers in the biocomposites increased the rate of biodegradation of the matrix polymer, degrading at a faster pace than both the pure PBS polymer and the switchgrass (SG) composite. This degradation was further confirmed using FT-IR and thermal analysis of the material structure before and after biodegradation. The increased biodegradation rate is attributed to the high concentration of proteins in the meal-based composites, which enhanced the hydrolytic biodegradation of the material and facilitated micro-organism growth. The SG-based composite degraded slower than the pure polymer due to its lignin content, which degrades via a different mechanism than the polymer, and slowed the biodegradation process.  相似文献   

11.
12.
Poly(lactic acid) (PLA) was blended with chemically modified Polyhydroxyoctanoate (mPHO) using a Haake twin-screw mixer. Due to the melt viscosity disparity between the two components, PHO was reacted with Hexamethylene diisocyanate (HDI) used as a chain extender to produce high molecular weight for improving compatibility and processability with PLA. The number average and weight average molecular weight of the PHO, reacted with 0.55 wt% HDI, were increased 314 and 275%, respectively, compared with those of the unmodified PHO. The blends were characterized for rheological, thermal, and mechanical properties. Infrared spectra confirmed the formation of the urethane linkages in mPHO. The shear viscosity, as a function of shear rate or shear stress, decreased with an increase in mPHO content, indicating that the PLA/mPHO blends show shear-thinning behavior along with the power-law model. DSC thermograms showed that the two components in the blends were found with two crystalline phases and two amorphous phases confirming the coexistence of two immiscible components. Tensile results indicated that tensile strength for blends decreased with increasing mPHO content up to 80%. A decrease in elastic modulus, as well as an increase in elongation at break, was seen as a function of mPHO content. Results of aging tests showed that the mechanical properties of the blends also dropped more at a higher PLA level when compared with those of the unaged samples.  相似文献   

13.
Here, the influence of graphene as a coating on the biodegradation process for two different polymers is investigated, poly(butylene adipate-co-terephthalate) (PBAT) (biodegradable) and low-density polyethylene (LDPE) (non-biodegradable). Chemical vapor deposition graphene was transferred to the surface of two types of polymers using the Direct Dry Transfer technique. Polymer films, coated and uncoated with graphene, were buried in a maturated soil for up to 180 days. The films were analyzed before and after exposure to microorganisms in order to obtain information about the integrity of the graphene (Raman Spectroscopy), the biodegradation mechanism of the polymer (molecular weight and loss of weight), and surface changes of the films (atomic force microscopy and contact angle). The results prove that the graphene coating acted as a material to control the biodegradation process the PBAT underwent, while the LDPE covered by graphene only had changes in the surface properties of the film due to the accumulation of solid particles. Polymer films coated with graphene may allow the production of a material that can control the microbiological degradation, opening new possibilities in biodegradable polymer packaging. Regarding the possibility of graphene functionalization, the coating can also be selective for specific microorganisms attached to the surface.  相似文献   

14.
Biodegradable film blends of chitosan with poly(lactic acid) (PLA) were prepared by solution mixing and film casting. The main goal of these blends is to improve the water vapor barrier of chitosan by blending it with a hydrophobic biodegradable polymer from renewable resources. Mechanical properties of obtained films were assessed by tensile test. Thermal properties, water barrier properties, and water sensitivity were studied by differential scanning calorimeter analysis, water vapor permeability measurements, and surface-angle contact tests, respectively. The incorporation of PLA to chitosan improved the water barrier properties and decreased the water sensitivity of chitosan film. However, the tensile strength and elastic modulus of chitosan decreased with the addition of PLA. Mechanical and thermal properties revealed that chitosan and PLA blends are incompatible, consistent with the results of Fourier transform infrared (FTIR) analysis that showed the absence of specific interaction between chitosan and PLA.  相似文献   

15.
Journal of Polymers and the Environment - In recent decades, biodegradable polymeric open-porous foams have been engaging increasing interests owing to their biodegradability, porosity and...  相似文献   

16.
Finding plastic substitutes based on sustainability, especially for short-term packaging and disposable applications has aroused scientific interest for many years. Starch may be a substitute for petroleum based plastics but it shows severe limitations due to its water sensitivity and rather low mechanical properties. To overcome these weaknesses and to maintain the material biodegradability, one option is to blend plasticized starch with another biodegradable polymer. To improve both the compatibility between the main phases and the performance of the final blend, different compatibilization strategies are reported in literature. However, the relative efficiency of each strategy is not widely reported. This paper presents three different strategies: in situ (i) formation of urethane linkages; (ii) coupling with peroxide between starch and PLA, and (iiii) the addition of PLA-grafted amylose (A-g-PLA) which has been elaborated ex situ and carefully analyzed before blending. This study compares the effect of each compatibilization strategy by investigating mechanical and thermal properties of each blend. Compatibilizing behavior of the A-g-PLA is demonstrated, with a significant increase (up to 60%) in tensile strength of starch/PLA blend with no decrease in elongation at failure.  相似文献   

17.
Zhou  Shanshan  Sun  Yongyan  Ma  Huimin  Jia  Chunfeng  Sun  Xiaoyu  Yang  Yubin  Liu  Juan  Yang  Jinjun 《Journal of Polymers and the Environment》2021,29(11):3605-3617
Journal of Polymers and the Environment - A linear diamides derivative (TMC300) as a nucleating agent (NA) was incorporated into biodegradable poly(ethylene succinate) (PES) to investigate effect...  相似文献   

18.
Journal of Polymers and the Environment - A set of novel biocompatible aliphatic–aromatic nanocomposites, including numerous acrylic acid-grafted poly(butylene carbonate-co-terephthalate)...  相似文献   

19.
20.
Research on biodegradable materials has been stimulated due to concern regarding the persistence of plastic wastes. Blending starch with poly(lactic acid) (PLA) is one of the most promising efforts because starch is an abundant and cheap biopolymer and PLA is biodegradable with good mechanical properties. Poly(vinyl alcohol) (PVOH) contains unhydrolytic residual groups of poly(vinyl acetate) and also has good compatibility with starch. It was added to a starch and PLA blend (50:50, w/w) to enhance compatibility and improve mechanical properties. PVOH (MW 6,000) at 10%, 20%, 30%, 40%, 50% (by weight) based on the total weight of starch and PLA, and 30% PVOH at various molecular weights (MW 6,000, 25,000, 78,000, and 125,000 dalton) were added to starch/PLA blends. PVOH interacted with starch. At proportions greater than 30%, PVOH form a continuous phase with starch. Tensile strength of the starch/PLA blends increased as PVOH concentration increased up to 40% and decreased as PVOH molecular weight increased. The increasing molecular weight of PVOH slightly affected water absorption, but increasing PVOH concentration to 40% or 50% increased water absorption. Effects of moisture content on the starch/PLA/PVOH blend also were explored. The blend containing gelatinized starch had higher tensile strength. However, gelatinized starch also resulted in increased water absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号