首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
正十二烷高温燃烧详细化学动力学机理的系统简化   总被引:5,自引:0,他引:5  
采用详细化学反应动力学机理的系统简化方法, 以典型航空燃料的替代组分正十二烷为研究对象, 开展了正十二烷高温燃烧化学动力学机理的系统简化. 首先采用多步直接关系图法(DRG)和基于计算奇异值摄动法(CSP)重要性指标的反应移除方法对由1279个组分, 5056个基元反应组成的正十二烷燃烧详细机理进行框架简化, 得到了包含59 个组分, 222 个基元反应的框架机理; 进一步采用CSP对框架机理进行时间尺度分析, 选出了10个准稳态物种, 采用准稳态近似方法(QSSA)构建了包含49个组分的全局简化机理. 计算结果表明, 在较宽的参数范围内, 框架机理和全局简化机理均能够重现正十二烷详细机理在高温燃烧的点火延迟时间、熄火以及物种浓度分布等方面的模拟结果.  相似文献   

2.
庚酸甲酯高温燃烧化学动力学机理的系统简化和分析   总被引:1,自引:0,他引:1  
采用详细化学反应动力学机理的系统简化方法, 对庚酸甲酯高温燃烧化学动力学机理进行了系统简化. 首先采用两步直接关系图法(Directed relation graph method, DRG)和主成分分析(Principle component analysis, PCA)方法对由1087个物种、4592步可逆反应组成的庚酸甲酯燃烧的详细机理进行框架简化, 得到了包含108个物种, 547步基元反应的框架机理. 在此框架机理基础上, 进一步采用计算奇异值摄动法(Computational singular perturbation, CSP)对框架机理进行时间尺度分析, 再选取30个准稳态物种, 采用准稳态近似(Quasi steady state approximation, QSSA)方法构建了包含78个物种、74步总包反应的全局简化机理. 模拟结果表明, 在较宽的参数范围内, 框架机理和全局简化机理均能重现庚酸甲酯高温燃烧时的点火延迟、物种浓度分布和熄火等燃烧特性. 此外, 基于框架机理阐明了庚酸甲酯高温燃烧的反应路径和对点火有重要影响的基元反应. 与详细机理相比, 框架机理保留了良好的精确性和全局性, 可以很好地反映庚酸甲酯的燃烧特性, 有助于对生物柴油的燃烧过程的理解.  相似文献   

3.
采用六种直接关系图类(DRG)方法对包含253个物种和1542个反应的Aramco Mech 1.3机理进行简化,并通过对所得到的六种简化机理取交集,最终得到包含81个物种和497个反应的框架机理。所得81个物种框架机理的点火延迟时间最大误差与其简化方法得到的框架机理最大误差相比并没有显著增加;这表明从不同简化方法的框架机理结果取交集可以有效去除冗余物种。基于81个物种框架机理模拟的双组分混合燃料的点火延迟时间与详细机理机理结果吻合很好。同时该框架机理在不同反应器中的模拟结果验证了温度、物种浓度分布和火焰等燃烧特性。元素流动分析结果表明,81个物种框架机理精确地再现了详细机理的燃烧反应路径。保留了详细机理的所有重要反应路径和层级结构,能够很好地再现C_1-C_2燃料的各种燃烧特性。因此,基于该81个物种框架机理可作为核心机理用于发展大分子烃类或含氧燃料的燃烧机理。  相似文献   

4.
采用六种直接关系图类(DRG)方法对包含253个物种和1542个反应的AramcoMech 1.3机理进行简化,并通过对所得到的六种简化机理取交集,最终得到包含81个物种和497个反应的框架机理。所得81个物种框架机理的点火延迟时间最大误差与其简化方法得到的框架机理最大误差相比并没有显著增加;这表明从不同简化方法的框架机理结果取交集可以有效去除冗余物种。基于81个物种框架机理模拟的双组分混合燃料的点火延迟时间与详细机理机理结果吻合很好。同时该框架机理在不同反应器中的模拟结果验证了温度、物种浓度分布和火焰等燃烧特性。元素流动分析结果表明,81个物种框架机理精确地再现了详细机理的燃烧反应路径。保留了详细机理的所有重要反应路径和层级结构,能够很好地再现C1-C2燃料的各种燃烧特性。因此,基于该81个物种框架机理可作为核心机理用于发展大分子烃类或含氧燃料的燃烧机理。  相似文献   

5.
使用极小反应网络方法, 在指定中间物种条件下, 构建反应步数最小的详细燃烧反应机理. 确定了关 于C1燃烧机理的17个物种和14个独立反应, 其中包含氢气燃烧的8个物种6个反应, 对缺乏动力学参数的独立反应进行组合替代, 反应速率常数采用Arrhenius双参数形式. 采用构建的25步反应C1多燃料燃烧机理(MRN-C1)进行了点火延迟时间和层流火焰速度的模拟. 考虑到工程应用对机理组分数的限制, 以CH4和CH3OH单组分燃料为例, 考察了去除“滞留”物种后单组分机理与总机理的模拟结果差别.  相似文献   

6.
RP-3替代燃料自点火燃烧机理构建及动力学模拟   总被引:11,自引:0,他引:11  
通过对RP-3 航空煤油成分的分析, 以及对8 组替代模型的对比实验, 选取了73.0%(质量分数)正十二烷, 14.7% 1,3,5-三甲基环己烷, 12.3%正丙基苯作为RP-3 航空煤油的替代模型. 使用本课题组自主研发的机理自动生成程序ReaxGen, 构建了RP-3 替代燃料的高温燃烧详细机理, 用该机理模拟了激波管点火延时, 并与实验数据进行比较. 用物质产率分析和近似轨迹优化算法(ATOA)简化方法简化了详细机理. 最后对燃烧机理在不同化学计量比及压力条件下的点火延时做了敏感度分析, 考察了燃烧机理在不同化学计量比下关键反应的异同. 结果表明, 该替代模型的燃烧机理能很好地描述RP-3煤油的高温点火特性.  相似文献   

7.
正十二烷高温燃烧机理的构建及模拟   总被引:3,自引:0,他引:3  
基于燃料燃烧反应机理的计算机自动生成方法,构建了正十二烷高温燃烧的详细反应机理; 分别采用物质产率分析和反应路径流量分析方法对详细机理进行简化,得到包含202个物种、738步反应的半详细机理和53个物种、228步反应的骨架机理; 对正十二烷点火延时、高温裂解以及层流火焰速度的模拟结果表明半详细机理和骨架机理具有很高的模拟精度,在工程计算流体力学仿真设计中有很好的应用前景.最后分析了正十二烷高温燃烧的反应路径,并对点火延时做了敏感度分析,考查了机理中的关键反应.  相似文献   

8.
高碳烃宽温度范围燃烧机理构建及动力学模拟   总被引:1,自引:0,他引:1  
发动机中燃料点火特性以及燃烧能量的释放对于发动机设计具有非常重要的作用,为了提高燃料的燃烧效率以及减少燃料在燃烧过程中污染物的排放,基于反应动力学机理对燃料燃烧过程的模拟就显得十分必要。因此需要更加深入的认识碳氢燃料的燃烧机理,探索其在燃烧过程中十分复杂的化学反应网络。为了发展能够适用于实际燃料多工况条件(宽温度范围、宽压力范围和不同当量比)燃烧的燃烧机理,基于碳氢燃料机理自动生成程序ReaxGen构建了正癸烷燃烧详细机理(包含1499个物种,5713步反应)和正十一烷燃烧详细机理(包含1843个物种,6993步反应)。详细机理主要由小分子核心机理和高碳烃类(C5以上)机理两部分组成。为了验证机理的合理性与可靠性,本文对于高碳烃燃烧新机理在点火延时时间以及物种浓度曲线进行了动力学分析,并与实验数据及国内外同类机理进行了对比,结果表明本文提出的正癸烷和正十一烷燃烧新机理在比较宽泛的温度、压力和当量比条件下都具有较高的模拟精度,为发展精确航空煤油燃烧模型提供了基础数据。同时考虑到详细机理的复杂性以及机理分析的计算量大和时耗长,本文基于误差传播的直接关系图形(Directed Relation Graph with Error Propagation,DRGEP)方法简化得到的包含709组分2793反应的正癸烷和包含820组分3115反应的正十一烷简化机理,使用DRGEP方法时所采用的数据点选自压力范围从1.0×10~5 Pa到1.0×10~6Pa,当量比范围从0.5到2.0,初始温度范围从600到1400时恒压点火的模拟结果在点火延迟时间附近区域的抽样,同时在正癸烷机理简化中选取正癸烷、O_2和N_2作为初始预选组分,正十一烷的机理简化中主要选取正十一烷、O_2和N_2作为初始预选组分,得到的简化机理在比较宽泛的条件下的预测结果与详细机理吻合很好。最后结合敏感度分析方法分析了正癸烷和正十一烷的点火延迟敏感性,考察了机理中影响点火的关键反应。结果表明:这些机理能够合理描述正癸烷和正十一烷的自点火特性,在工程计算流体力学仿真设计中有很好的应用前景。  相似文献   

9.
RP-3航空煤油替代燃料及其化学反应动力学模型   总被引:17,自引:0,他引:17  
本文提出了40%(摩尔分数, 下同)正癸烷、42%正十二烷、13%乙基环己烷和5%对二甲苯的四组分RP-3 航空煤油替代燃料模型, 并通过实验充分验证了替代燃料模型与实际RP-3 航空煤油在理化特性上的相似性. 采用对冲火焰实验台架, 测量了RP-3航空煤油以及四组分替代燃料的层流火焰传播速度. 对比结果表明本文提出的替代燃料能够准确描述实际RP-3航空煤油的燃烧速率. 进一步发展了包含168组分、1089反应的半详细反应动力学模型, 验证结果表明本文机理能够准确预测RP-3航空煤油着火延迟时间和火焰传播速度.  相似文献   

10.
采用系统的方法自动构建链烷烃高温燃烧反应机理   总被引:3,自引:0,他引:3  
为了得到合理可靠和简化的反应机理,利用反应机理自动生成程序ReaxGen,构建了正庚烷、异辛烷、正癸烷和正十二烷的高温燃烧反应详细机理;同时分别采用物质产率分析和反应路径流量分析的方法对详细机理进行简化,得到了半详细机理和骨架机理. 在较宽的温度和压力条件下,对半详细机理和骨架机理进行了点火延时、层流火焰传播速度和重要物种浓度曲线的模拟并与实验结果比较;最后,图示说明了这些烷烃的主要高温燃烧路径,给出了点火延迟时间的敏感度分析. 结果表明:这些机理能够合理描述链烷烃的自点火特性,文中提出的结合ReaxGen程序的机理构建方法和反应路径流量分析的简化方法也可以用于其它烃类的高温燃烧机理构建.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号