首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Woodland expansion is a global phenomenon that, despite receiving substantial attention in recent years, remains poorly understood. Landscape change of this magnitude has several impacts perceived as negative on landscape processes, such as influencing fire regimes, habitat for wildlife, and hydrological processes. In southern Great Plains, Juniperus virginiana has been identified as a major contributor to woodland expansion. Adding to the perplexity of this phenomenon is its evidence on numerous landscape types on several continents, documented under varying climates. Our study aimed to quantify a direct treatment to reduce or slow down woodland expansion in an experimental rangeland in central Oklahoma, United States under three treatments: 1) herbicide, 2) fire with herbicide, and 3) control (no fire, no herbicide) within areas classified as “open grassland” in 1979. Thereafter, we identified these same areas in 2010 with remotely sensed imagery (Light Detection And Ranging) to quantify 1) total encroachment and 2) total encroachment by three size classes: a) small 1 ? 2.5 m, b) intermediate 2.5 ? 4.5 m and c) tall > 4.5 m. Overall, of the total area classified as grassland in 1979 (277.64 ha), 31% had been encroached by 2010. Encroachment was greatest in the control treatments, followed by herbicide-only treatment application and lowest in the fire and herbicide treatment with minor differences in mean plant height (4.11 m ± 0.28). Encroached areas were mostly dominated by tall individuals (45 ± 3.5%), followed by the intermediate-height class (31.53 ± 1.10%) and the least recorded in the smallest-height class (23.46 ± 2.29%), suggesting expansion occurred during the initial phases of treatment application. The costly practice of herbicide application did not provide a feasible solution to control further woodland expansion. However, when using herbicide with fire, woodland expansion was reduced, highlighting the effectiveness of early intervention by fire in reducing encroachment. This further supports landscape-scale studies highlighting the effect of fire to reduce woodland expansion.  相似文献   

2.
Restoring arid regions degraded by invasive annual grasses to native perennial grasses is a critical conservation goal. Targeting site availability, species availability, and species performance is a key strategy for reducing invasive annual grass cover while simultaneously increasing the abundance of seeded native perennial grasses. However, the potential for establishing successful seedings is still highly variable in rangeland ecosystems, likely because of variable year-to-year weather. In this study, we evaluated the independent and combined inputs of tilling, burning, applying imazapic herbicide, and varying seeding rates on existing species and seeded native perennial grass performance from 2008 to 2012 in a southwestern Idaho rangeland ecosystem. We found that combining tilling, fire, and herbicides produced the lowest annual grass cover. The combination of fire and herbicides yielded the highest seeded species density in the hydrologic year (HY) (October ? September) 2010, especially at higher than minimum recommended seeding rates. Although the independent and combined effects of fire and herbicides directly affected the growth of resident species, they failed to affect seeded species cover except in HY 2010, when weather was favorable for seedling growth. Specifically, low winter temperature variability (few freeze-thaw cycles) followed by high growing season precipitation in HY 2010 yielded 14 × more seeded perennial grasses than any other seeding year, even though total annual precipitation amounts did not greatly vary between 2009 and 2012. Collectively, these findings suggest that tilling, applying prescribed fire, and herbicides before seeding at least 5 × the minimum recommended seeding rate should directly reduce resident annual grass abundance and likely yield high densities of seeded species in annual grass ? dominated ecosystems, but only during years of stable winter conditions followed by wet springs.  相似文献   

3.
采用随机区组试验方法研究内蒙古高原短花针茅荒漠草原地区主要植物种群特征及生物量资源分配对载畜率的响应,结果表明:植物群落结构在轻度放牧区最佳,不放牧区的植物群落结构优于重度放牧区。2005年降水量(156.8mm)较低,冷蒿、短花针茅和无芒隐子草的盖度、高度及地上现存量显著低于2004年(P<0.05),且随载畜率的增大而降低。从生物量资源分配可看出,冷蒿主要通过营养繁殖来竞争资源,其茎、叶和根的资源分配受载畜率与降水量双重因子的调配,对茎、叶的资源分配在轻牧区较高,且随载畜率增大对根系的资源分配逐渐增大;而短花针茅和无芒隐子草采用相同的生存策略适应载畜率变化,随着载畜率的增加对其根系的资源分配高于茎、叶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号