首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Some of the best thermoelectrics are complex materials with rattling guests inside oversized atomic cages. Understanding the chemical and structural origins of the rattling behavior is essential to the design of thermoelectric materials. In this work, a clear connection is established between the local bonding asymmetry and anharmonic rattling modes in tetrahedrite thermoelectrics, enabled by the chemically active electron lone pairs. The studies reveal a five‐atom atomic cage Sb[CuS3]Sb in Cu12Sb4S13 tetrahedrites that exhibits strong local bonding asymmetry: covalent bonding inside the CuS3 trigonal plane and weak out‐of‐plane bonding induced by the lone‐pair electrons of Sb. This bonding asymmetry leads to out‐of‐plane rattling modes that are quasilocalized and anharmonic with low frequency and large amplitude, and are likely the origin of low thermal conductivity in tetrahedrites. Such knowledge highlights the importance of local structure asymmetry and lone‐pair atoms in driving anharmonic rattling, providing a stepping stone to the discovery and design of next‐generation thermoelectrics.  相似文献   

2.
Forming solid solutions has long been considered an effective approach for good thermoelectrics because the lattice thermal conductivities are lower than those of the constituent compounds due to phonon scattering from disordered atoms. However, this effect could also be compensated by a reduction in carrier mobility due to electron scattering from the same disorder. Using a detailed study of n‐type (PbTe)1–x (PbSe)x solid solution (0 ≤ x ≤ 1) as a function of composition, temperature, and doping level, quantitative modeling of transport properties reveals the important parameters characterizing these effects. Based on this analysis, a general criterion for the improvement of zT due to atomic disorder in solid solutions is derived and can be applied to several thermoelectric solid solutions, allowing a convenient prediction of whether better thermoelectric performance could be achieved in a given solid solution. Alloying is shown to be most effective at low temperatures and in materials that are unfavorable for thermoelectrics in their unalloyed forms: high lattice thermal conductivity (stiff materials with low Grüneisen parameters) and high deformation potential.  相似文献   

3.
As a key type of emerging thermoelectric material, tin telluride (SnTe) has received extensive attention because of its low toxicity and eco‐friendly nature. The recent trend shows that band engineering and nanostructuring can enhance thermoelectric performance of SnTe as intermediate temperature (400–800 K) thermoelectrics, which provides an alternative for toxic PbTe with the same operational temperature. This review highlights the key strategies to enhance the thermoelectric performance of SnTe materials through band engineering, carrier concentration optimization, synergistic engineering, and structure design. A fundamental analysis elucidates the underpinnings for the property improvement. This comprehensive review will boost the relevant research with a view to work on further performance enhancement of SnTe materials.  相似文献   

4.
The discovery of new, high-performing thermoelectrics is of vital importance to promoting thermal energy conversion efficiency. Herein, a new p-type thermoelectric material BaAgAs with an exceptional figure of merit (zT) surpassing 1.1 at 970 K is present as a promising candidate for high-temperature applications. Verified by comprehensive experimental and theoretical investigations, BaAgAs possesses two intrinsic features in favoring zT: i) low lattice thermal conductivity, ascribed to the heavy element Ba in a loose mono-hexagonal layer, the large mass fluctuation in the Ag-As honeycomb layer, and the alternately interlayer stacking between mono-hexagonal and honeycomb layers; ii) good electrical properties contributed by multiple band transport, due to the small band offset between two valence band extremums and the strong anisotropic band effective mass. With enhanced phonon–phonon scattering via Sb/Bi substitution on the As sites, the lattice thermal conductivity is minimized, which results in significantly enhanced zT values. Additionally, an inspiring prediction via the first-principles calculation suggests that n-type BaAgAs can potentially outperform its p-type counterpart due to its higher conducting band degeneracy. This study will stimulate intense interests in the exploration of compounds with planar honeycomb structures as new high-performance thermoelectric materials.  相似文献   

5.
Thermoelectric technology has attracted great attention due to its ability to recover and convert waste heat into readily available electric energy. Among the various candidate materials, liquid‐like compounds have received tremendous research interest on account of their intrinsically ultralow lattice thermal conductivity, tunable electrical properties, and high thermoelectric performance. Despite their complex phase transitions and diverse crystal structures, liquid‐like materials have two independent sublattices in common: one rigid sublattice formed by immobile ions for the free transport of electrons and one liquid‐like sublattice consisting of highly mobile ions to interrupt the thermal transports. This review first outlines the common structural features of liquid‐like thermoelectrics, along with their unusual electron and phonon transport behaviors that well satisfy the concept of “phonon‐liquid electron‐crystal.” Next, some commonly adopted strategies for further improving their thermoelectric performance are highlighted. The main progress achieved in the typical liquid‐like TE materials is then summarized, with an emphasis on their diverse crystal structures, common characteristics, and unique transport properties. The recent understandings on the stability issue of liquid‐like TE materials are also introduced. Finally, an outlook is given for the liquid‐like materials with the aim to boost further development in this exciting scientific subfield.  相似文献   

6.
The thermoelectric compound (GeTe)x(AgSbTe2)1?x, in short (TAGS‐x), is investigated with a focus on two stoichiometries, i.e., TAGS‐50 and TAGS‐85. TAGS‐85 is currently one of the most studied thermoelectric materials with great potential for thermoelectric applications. Yet, surprisingly, the lowest thermal conductivity is measured for TAGS‐50, instead of TAGS‐85. To explain this unexpected observation, atom probe tomography (APT) measurements are conducted on both samples, revealing clusters of various compositions and sizes. The most important role is attributed to Ag2Te nanoprecipitates (NPs) found in TAGS‐50. In contrast to the Ag2Te NPs, the matrix reveals an unconventional bond breaking mechanism. More specifically, a high probability of multiple events (PME) of ≈60% is observed for the matrix by APT. Surprisingly, the PME value decreases abruptly to ≈20–30% for the Ag2Te NPs. These differences can be attributed to differences in chemical bonding. The precipitates' PME value is indicative of normal bonding, i.e., covalent bonding with normal optical modes, while materials with this unconventional bond breaking found in the matrix are characterized by metavalent bonding. This implies that the interface between the metavalently bonded matrix and covalently bonded Ag2Te NP is partly responsible for the reduced thermal conductivity in TAGS‐50.  相似文献   

7.
Contrary to the conventional belief that the consideration for topological insulators (TIs) as potential thermoelectrics is due to their excellent electrical properties benefiting from the topological surface states, this work shows that the 3D weak TIs, formed by alternating stacks of quantum spin Hall layers and normal insulator (NI) layers, can also be decent thermoelectrics because of their focus on minimum thermal conductivity. The minimum lattice thermal conductivity is experimentally confirmed in Bi14Rh3I9 and theoretically predicted for Bi2TeI at room temperature. It is revealed that the topologically “trivial” NI layers play a surprisingly critical role in hindering phonon propagation. The weak bonding in the NI layers gives rise to significantly low sound velocity, and the localized low‐frequency vibrations of the NI layers cause strong acoustic–optical interactions and lattice anharmonicity. All these features are favorable for the realization of exceptionally low lattice thermal conductivity, and therefore present remarkable opportunities for developing high‐performance thermoelectrics in weak TIs.  相似文献   

8.
A theoretical evaluation of the thermoelectric‐related electrical transport properties of 36 half‐Heusler (HH) compounds, selected from more than 100 HHs, is carried out in this paper. The electronic structures and electrical transport properties are studied using ab initio calculations and the Boltzmann transport equation under the constant relaxation time approximation for charge carriers. The electronic structure results predict the band gaps of these HH compounds, and show that many HHs are narrow‐band‐gap semiconductors and, therefore, are potentially good thermoelectric materials. The dependence of Seebeck coefficient, electrical conductivity, and power factor on the Fermi level is investigated. Maximum power factors and the corresponding optimal p‐ or n‐type doping levels, related to the thermoelectric performance of materials, are calculated for all HH compounds investigated, which certainly provide guidance to experimental work. The estimated optimal doping levels and Seebeck coefficients show reasonable agreement with the measured results for some HH systems. A few HHs are recommended to be potentially good thermoelectric materials based on our calculations.  相似文献   

9.
Transmission electron microscopy studies show that a PbTe‐BaTe bulk thermoelectric system represents the coexistence of solid solution and nanoscale BaTe precipitates. The observed significant reduction in the thermal conductivity is attributed to the enhanced phonon scattering by the combination of substitutional point defects in the solid solution and the presence of high spatial density of nanoscale precipitates. In order to differentiate the role of nanoscale precipitates and point defects in reducing lattice thermal conductivity, a modified Callaway model is proposed, which highlights the contribution of point defect scattering due to solid solution in addition to that of other relevant microstructural constituents. Calculations indicate that in addition to a 60% reduction in lattice thermal conductivity by nanostructures, point defects are responsible for about 20% more reduction and the remaining reduction is contributed by the collective of dislocation and strain scattering. These results underscore the need for tailoring integrated length‐scales for enhanced heat‐carrying phonon scattering in high performance thermoelectrics.  相似文献   

10.
Composite engineering favors high thermoelectric performance by tuning the carrier and phonon transport. Herein, orthorhombic and rhombohedral dual-phase GeSe are designed in situ by tailoring chemical bonds. Atom probe tomography verifies the coexistence of a covalently bonded orthorhombic phase and a metavalently bonded rhombohedral phase in GeSe-InTe alloys. The production of the rhombohedral phase simultaneously increases the carrier concentration, the carrier mobility, the band degeneracy, and the density-of-states effective mass due to the reduced formation energy of cation vacancies and the improved crystal symmetry. These attributes are beneficial to a high-power factor. In addition, the thermal conductivity can be significantly reduced due to the intrinsically strong lattice anharmonicity of the metavalently bonded phase, the interfacial acoustic phonon mismatch across different bonding mechanisms, and the phonon scattering at vacancy-solute clusters. Moreover, the metavalently bonded phase embraces higher solubility of dopants that enables the further optimization of properties by Cd-Ag doping, resulting in a zT of 0.95 at 773 K as well as enhanced strength and ductility in dual-phase Ge0.94Cd0.03Ag0.03Se(InTe)0.15. This work indicates that in situ design of dual-phase composites by tailoring chemical bonds is an effective method for enhancing the thermoelectric and mechanical properties of GeSe and other p-bonded chalcogenides.  相似文献   

11.
The superionic conductor Cu2Se is a promising thermoelectric material due to its low thermal conductivity. An abnormal but clear change in the thermoelectric parameters has been observed during the phase transformation from the ordered and non-cubic α-Cu2Se to the disordered and cubic β-Cu2Se. However, the microstructural origin of the abnormal change and its implications for thermoelectric applications remain largely unknown. Herein, by mimicking the real working conditions of thermoelectrics, the phase transition from α- to β-Cu2Se induced by the rising temperature has been carefully investigated by in situ transmission electron microscopy. It is observed that an abrupt and anisotropic volume-change in the Se-sublattice occurs when the temperature is raised to the phase transition point. The abnormal change in the crystalline volume versus temperature, which is caused by the local migration of Cu-ions, induces an instant and uncommon strain-field, which reduces the carrier's mobility and increases the electrical resistance. Local migration of Cu-ions is responsible for a quite low thermal conductivity. Such effects exist only at the instance of the phase transition. Observing the thermoelectric response of the structure during the phase transition may provide insights into the development of high performance thermoelectric materials, which fall beyond the traditional approaches.  相似文献   

12.
We report a theoretical investigation of electronic structures, optical and thermoelectric properties of two ternary-layered chalcogenides, MnBi4S7 and FeBi4S7 , by combining the first principles density functional calculations and semi-local Boltzmann transport theory. The calculated electronic band structure have demonstrated that both compounds exhibit indirect band gaps. The optical transitions are explored via the dielectric function (real and imaginary parts) along with other related optical constants including refractive index, reflectivity, and energy loss spectrum. These chalcogenides have exhibited interesting thermoelectric properties such as Seebeck’s coefficient, electrical and thermal conductivity, and power factor as function of temperatures.  相似文献   

13.
Recently, Cu-based chalcogenides such as Cu3SbSe4, Cu2Se, and Cu2SnSe3 have attracted much attention because of their high thermoelectric performance and their common feature of very low thermal conductivity. However, for practical use, materials without toxic elements such as selenium are preferable. In this paper, we report Se-free Cu3SbS4 thermoelectric material and improvement of its figure of merit (ZT) by chemical substitutions. Substitutions of 3 at.% Ag for Cu and 2 at.% Ge for Sb lead to significant reductions in the thermal conductivity by 37% and 22%, respectively. These substitutions do not sacrifice the power factor, thus resulting in enhancement of the ZT value. The sensitivity of the thermal conductivity to chemical substitutions in these compounds is discussed in terms of the calculated phonon dispersion and previously proposed models for Cu-based chalcogenides. To improve the power factor, we optimize the hole carrier concentration by substitution of Ge for Sb, achieving a power factor of 16 μW/cm K2 at 573 K, which is better than the best reported for Se-based Cu3SbSe4 compounds.  相似文献   

14.
15.
The extraordinary thermoelectric properties of lead chalcogenides have attracted huge interest in part due to their unexpected low thermal conductivity. Here, it is shown that anharmonicity and large cation disorder are present in both PbTe and PbS, based on elaborate charge density visualization using synchrotron powder X‐ray diffraction (SPXRD) data analyzed with the maximum entropy method (MEM). In both systems, the cation disorder increases with increasing temperature, whereas the Te/S anions appear to be centered on the expected lattice positions. Even at the lowest temperatures of 105 K, the lead ion is on average displaced by ≈0.2 Å from the rock‐salt lattice position, creating a strong phonon scattering mechanism. These findings provide a clue to understanding the excellent thermoelectric performance of crystals with atomic disorder. The SPXRD–MEM approach can be applied in general opening up for widespread characterization of subtle structural features in crystals with unusual properties.  相似文献   

16.
In this paper, we address the question of how to engineer the electronic structure to enhance the performance of a thermoelectric material. We examine several different materials and show that all of them, even those for which giant Seebeck coefficients have been predicted, display a value that is expected from conventional thermoelectric theory. For molecular thermoelectrics, we show that the detailed lineshape plays an important role. Finally, using III–V alloy semiconductors as a model system, we explore the role of electronic structure in the Seebeck coefficient, electrical conductivity, and power factor. In the process, some general guidelines for engineering the electronic component of thermoelectric performance are identified.  相似文献   

17.
The key properties for the design of high-efficiency thermoelectric materials are a low thermal conductivity and a large Seebeck coefficient with moderate electrical conductivity. Recent developments in nanotechnology and nanoscience are leading to breakthroughs in the field of thermoelectrics. The goal is to create a situation where phonon pathways are disrupted due to nanostructures in “bulk” materials. Here we introduce promising materials: (Ga,In)2Te3 with unexpectedly low thermal conductivity, in which certain kinds of superlattice structures naturally form. Two-dimensional vacancy planes with approximately 3.5-nm intervals exist in Ga2Te3, scattering phonons efficiently and leading to a very low thermal conductivity.  相似文献   

18.
Dislocations and the residual strain they produce are instrumental for the high thermoelectric figure of merit, zT  ≈ 2, in lead chalcogenides. However, these materials tend to be brittle, barring them from practical green energy and deep space applications. Nonetheless, the bulk of thermoelectrics research focuses on increasing zT without considering mechanical performance. Optimized thermoelectric materials always involve high point defect concentrations for doping and solid solution alloying. Brittle materials show limited plasticity (dislocation motion), yet clear links between crystallographic defects and embrittlement are hitherto unestablished in PbTe. This study identifies connections between dislocations, point defects, and the brittleness (correlated with Vickers hardness) in single crystal and polycrystalline PbTe with various n- and p-type dopants. Speed of sound measurements show a lack of electronic bond stiffening in p-type PbTe, contrary to the previous speculation. Instead, varied routes of point defect–dislocation interaction restrict dislocation motion and drive embrittlement: dopants with low doping efficiency cause high defect concentrations, interstitial n-type dopants (Ag and Cu) create highly strained obstacles to dislocation motion, and highly mobile dopants can distribute inhomogeneously or segregate to dislocations. These results illustrate the consequences of excessive defect engineering and the necessity to consider both mechanical and thermoelectric performance when researching thermoelectric materials for practical applications.  相似文献   

19.
High performance n‐type bulk BiAgSeS is successfully synthesized to construct heterogeneous composites which consist of mesoscale grains of both pristine BiAgSeS and doped BiAgSeS1‐xClx ( x = 0.03 or 0.05). Without perceptibly deteriorating the Seebeck coefficient, a significant enhancement on electrical conductivity is obtained due to an anomalous increase of both carrier mobility and concentration; the enhanced carrier mobility is proven to be a direct result of modulation doping which relates to the band alignments, while the increased carrier concentration is attributed to the possible charge transfer from Cl rich nanoscale precipitates at the heterogeneous BiAgSeS/BiAgSeS1‐xClx grain boundaries. Eventually, an enhanced figure of merit ZT ≈ 1.23 at 773 K in the composite (BiAgSeS)0.5(BiAgSeS0.97Cl0.03)0.5 is achieved, indicating that heterogeneous composites ultilizing the mechanism of modulation doping shall be a promising means of boosting the performance of thermoelectric materials. This strategy should be very likely applicable to other thermoelectrics.  相似文献   

20.
Thermoelectric power sources have consistently demonstrated their extraordinary reliability and longevity for deep space missions and small unattended terrestrial systems. However, more efficient bulk materials and practical devices are required to improve existing technology and expand into large‐scale waste heat recovery applications. Research has long focused on complex compounds that best combine the electrical properties of degenerate semiconductors with the low thermal conductivity of glassy materials. Recently it has been found that nanostructuring is an effective method to decouple electrical and thermal transport parameters. Dramatic reductions in the lattice thermal conductivity are achieved by nanostructuring bulk silicon with limited degradation in its electron mobility, leading to an unprecedented increase by a factor of 3.5 in its performance over that of the parent single‐crystal material. This makes nanostructured bulk (nano‐bulk) Si an effective high temperature thermoelectric material that performs at about 70% the level of state‐of‐the‐art Si0.8Ge0.2 but without the need for expensive and rare Ge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号