首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A simple and efficient device for density-based particle sorting is in high demand for the purification of specific cells, bacterium, or environmental particles for medical, biochemical, and industrial applications. Here we present microfluidic systems to achieve size- and density-based particle separation by adopting the sedimentation effect for a size-based particle sorting technique utilizing microscale hydrodynamics, called ??pinched-flow fractionation (PFF).?? Two schemes are presented: (a) the particle inertia scheme, which utilizes the inertial force of particle movement induced by the momentum change in the curved microchannel, and (b) the device rotation scheme, in which rotation of the microdevice exerts centrifugal force on the flowing particles. In the experiments, we successfully demonstrated continuous sorting of microparticles according to size and density by using these two schemes, and showed that the observed particle movements were in good agreement with the theoretical estimations. The presented schemes could potentially become one of the functional components for integrated bioanalysis systems that can manipulate/separate small amount of precious biological samples.  相似文献   

2.
Particle/cell separation in heterogeneous mixtures including biological samples is a standard sample preparation step for various biomedical assays. A wide range of microfluidic-based methods have been proposed for particle/cell sorting and isolation. Two promising microfluidic platforms for this task are microfluidic chips and centrifugal microfluidic disks. In this review, we focus on particle/cell isolation methods that are based on liquid centrifugation phenomena. Under this category, we reviewed particle/cell sorting methods which have been performed on centrifugal microfluidic platforms, and inertial microfluidic platforms that contain spiral channels and multi-orifice channels. All of these platforms implement a form of centrifuge-based particle/cell separation: either physical platform centrifugation in the case of centrifugal microfluidic platforms or liquid centrifugation due to Dean drag force in the case of inertial microfluidics. Centrifugal microfluidic platforms are suitable for cases where the preparation step of a raw sample is required to be integrated on the same platform. However, the limited available space on the platform is the main disadvantage, especially when high sample volume is required. On the other hand, inertial microfluidics (spiral and multi-orifice) showed various advantages such as simple design and fabrication, the ability to process large sample volume, high throughput, high recovery rate, and the ability for multiplexing for improved performance. However, the utilization of syringe pump can reduce the portability options of the platform. In conclusion, the requirement of each application should be carefully considered prior to platform selection.  相似文献   

3.
This work presents a novel magnetic actuation scheme for advanced particle handling on our previously introduced, centrifugal microfluidic platform for array-based analysis of individual cells and beads. The conceptually simple actuation is based on the reciprocating motion of an elastomeric membrane featuring an integrated permanent magnet and a stationary magnet aligned along the orbit of a disc-based chamber. This compression chamber is placed at the downstream end of the particle capture chamber to induce centripetally directed, hydrodynamic lift forces on particles trapped in V-shaped geometrical barriers. Towards high frequencies of rotation, the on-disc magnet ceases to follow the rapidly oscillating magnetic field, so that the magnetic actuator is disabled during the initial, sedimentation-based filling of the trap array. At reduced spin speeds, the residence time of the magnetic actuator is sufficient to displace the magnetic actuator, resulting in a flow through the V-cup array that re-distributes, and eventually fully depletes, the previously trapped beads from the array. The same magnetic deflection scheme is also demonstrated to accelerate mixing, e.g. for upstream sample preparation.  相似文献   

4.
Particle focusing in microfluidic devices   总被引:1,自引:1,他引:0  
Focusing particles (both biological and synthetic) into a tight stream is usually a necessary step prior to counting, detecting, and sorting them. The various particle focusing approaches in microfluidic devices may be conveniently classified as sheath flow focusing and sheathless focusing. Sheath flow focusers use one or more sheath fluids to pinch the particle suspension and thus focus the suspended particles. Sheathless focusers typically rely on a force to manipulate particles laterally to their equilibrium positions. This force can be either externally applied or internally induced by channel topology. Therefore, the sheathless particle focusing methods may be further classified as active or passive by the nature of the forces involved. The aim of this article is to introduce and discuss the recent developments in both sheath flow and sheathless particle focusing approaches in microfluidic devices.  相似文献   

5.
Simulation of microfluidic devices is very difficult due to the interaction and coupling between multiple energy domains. This article presents an innovative technique to simulate dielectrophoretic forces and laminar flows in microfluidic devices. Lab-on-a-chip systems, or biochips, are one of the fastest growing sectors in the life sciences industry. These systems employ miniaturization of biological separation and assay techniques to enable multiple, complex analyses on a single chip. Separation of micron-sized particles and cells is critical in many biochemical-analysis and high-throughput-screening applications. Field flow fractionation (FFF) using dielectrophoresis (DEP) is fast becoming an established methodology for sorting and manipulating particles and cells.  相似文献   

6.
Magnetic particle dosing and size separation in a microfluidic channel   总被引:1,自引:0,他引:1  
Separation of functional magnetic particles or magnetically labeled entities is a key feature for bioanalytical or biomedical applications and therefore also an important component of lab-on-a-chip devices for biological applications. We present a novel integrated microfluidic magnetic bead manipulation device, comprising dosing of magnetic particles, controlled release and subsequent magnetophoretic size separation with high resolution. The system is designed to meet the requirements of specific bioassays, in particular of on-chip agglutination assays for the detection of rare analytes by particle coupling as doublets. Integrated soft-magnetic microtips with different shapes provide the magnetic driving force of the bead manipulation protocol. The magnetic tips that serve as field concentrators of an external electromagnetic field, are positioned in close contact to a microfluidic channel in order to generate high magnetic actuation forces. Mixtures of 1.0 μm and 2.8 μm superparamagnetic beads have been used to characterize the system. Magnetophoretic size separation with high resolution was performed in static conditions and in continuous flow mode. In particular, we could demonstrate the separation of 1.0 μm single beads and doublets in a sample flow.  相似文献   

7.
This study describes an analytical model and experimental verifications of transport of non-magnetic spherical microparticles in ferrofluids in a microfluidic system that consists of a microchannel and a permanent magnet. The permanent magnet produces a spatially non-uniform magnetic field that gives rise to a magnetic buoyancy force on particles within ferrofluid-filled microchannel. We obtained trajectories of particles in the microchannel by (1) calculating magnetic buoyancy force through the use of an analytical expression of magnetic field distributions and a nonlinear magnetization model of ferrofluids, (2) deriving governing equations of motion for particles through the use of analytical expressions of dominant magnetic buoyancy and hydrodynamic viscous drag forces, (3) solving equations of motion for particles in laminar flow conditions. We studied effects of particle size and flow rate in the microchannel on the trajectories of particles. The analysis indicated that particles were increasingly deflected in the direction that was perpendicular to the flow when size of particles increased, or when flow rate in the microchannel decreased. We also studied ??wall effect?? on the trajectories of particles in the microchannel when surfaces of particles were in contact with channel wall. Experimentally obtained trajectories of particles were used to confirm the validity of our analytical results. We believe this study forms the theoretical foundation for size-based particle (both synthetic and biological) separation in ferrofluids in a microfluidic device. The simplicity and versatility of our analytical model make it useful for quick optimizations of future separation devices as the model takes into account important design parameters including particle size, property of ferrofluids, magnetic field distribution, dimension of microchannel, and fluid flow rate.  相似文献   

8.
By the use of an experimental setup for microfluidic flows, we have characterized the separation and concentration characteristics of the so-called Trilobite? separation unit. Our separation unit consists of microfluidic channels and an elliptical separation geometry with a solid and a permeable wall region. We show that it is possible to adjust the thickness of different flow layers by changing the flow rates and pressure drop over the permeable wall. For high pressure drops, the separator shows promising concentration characteristics. For low pressure drops, an increase in flow rate results in a thinning of the flow layers. For sufficiently high flow rates, it should therefore be possible to create flow layers sufficiently thin that the particle separation is entirely dominated by hydrodynamic forces. This, in turn, will enable clog-free particle separation.  相似文献   

9.
Microfabricated interdigitated electrode array is a convenient form of electrode geometry for dielectrophoretic trapping of particles and biological entities such as cells and bacteria within microfluidic biochips. We present experimental results and finite element modeling of the holding forces for both positive and negative dielectrophoretic traps on microfabricated interdigitated electrodes within a microfluidic biochip fabricated in silicon with a 12-/spl mu/m-deep chamber. Anodic bonding was used to close the channels with a glass cover. An Experimental protocol was then used to measure the voltages necessary to capture different particles (polystyrene beads, yeast cells, spores and bacteria) against destabilizing fluid flows at a given frequency. The experimental results and those from modeling are found to be in close agreement, validating our ability to model the dielectrophoretic filter for bacteria, spores, yeast cells, and polystyrene beads. This knowledge can be very useful in designing and operating a dielectrophoretic barrier or filter to sort and select particles entering the microfluidic devices for further analysis.  相似文献   

10.
Vortex-aided particle separation is a powerful method to efficiently isolate circulating tumor cells from blood, since it allows high throughput and continuous sample separation, with no need for time-consuming sample preprocessing. With this approach, only the larger particles from a heterogeneous sample will be stably trapped in reservoirs that expand from a straight microfluidic channel, allowing for efficient particle sorting along with simultaneous concentration. A possible limitation is related to the loss of particles from vortex traps due to particle–particle interactions that limit the final cellularity of the enriched solution. It is fundamental to minimize this issue considering that a scant number of target cells are diluted in highly cellular blood. In this work, we present a device for size-based particle separation, which exploits the well-consolidated vortex-aided sorting, but new reservoir layouts are presented and investigated in order to increase the trapping efficiency of the chip. Through simulations and experimental validations, we have been able to optimize the device design to increase the maximum number of particles that can be stably trapped in each reservoir and therefore the total efficiency of the chip.  相似文献   

11.
In this paper, we present a digital microfluidic droplet sorting platform to achieve automated droplet sorting based on fluorescent detection. We design and fabricate a kind of digital microfluidic chip for manipulating nano-liter-sized liquid droplets, and the chip is integrated with a fluorescence-initiated feedback system for real-time sorting control. The driving and sorting characteristics of fluorescent droplets encapsulating fluorescent-labeled particles are studied on this platform. The droplets dispensed from on-chip reservoir electrode are transported to a fluorescence detection site and sorted according to their fluorescence signals. The fluorescent droplets and non-fluorescent droplets are successfully separated and the number of fluorescent particles inside each droplet is quantified by its fluorescent intensity. We realize droplet sorting at 20 Hz and obtain a linear relationship between the fluorescent particle concentrations and the fluorescence signals. This work is easily adapted for sorting out fluorescent-labeled microparticles, cells and bacteria and thus has the potential of quantifying catalytic or regulatory bio-activities.  相似文献   

12.
This paper presents the modeling and optimization of a magnetophoretic bioseparation chip for isolating cells, such as circulating tumor cells from the peripheral blood. The chip consists of a continuous-flow microfluidic platform that contains locally engineered magnetic field gradients. The high-gradient magnetic field produced by the magnets is spatially non-uniform and gives rise to an attractive force on magnetic particles flowing through a fluidic channel. Simulations of the particle–fluid transport and the magnetic force are performed to predict the trajectories and capture lengths of the particles within the fluidic channel. The computational model takes into account key forces, such as the magnetic and fluidic forces and their effect on design parameters for an effective separation. The results show that the microfluidic device has the capability of separating various cells from their native environment. An experimental study is also conducted to verify and validate the simulation results. Finally, to improve the performance of the separation device, a parametric study is performed to investigate the effects of the magnetic bead size, cell size, number of beads per cell, and flow rate on the cell separation performance.  相似文献   

13.
The pumping of fluids in microfluidic discs by centrifugal forces has several advantages, however, centrifugal pumping only permits unidirectional fluid flow, restricting the number of processing steps that can be integrated before fluids reach the edge of the disc. As a solution to this critical limitation, we present a novel pumping technique for the centrifugal microfluidic disc platform, termed the thermo-pneumatic pump (TPP), that enables fluids to be transferred the center of a rotating disc by the thermal expansion of air. The TPP is easy to fabricate as it is a structural feature with no moving components and thermal energy is delivered to the pump via peripheral infrared (IR) equipment, enabling pumping while the disc is in rotation. In this report, an analytical model for the operation of the TPP is presented and experimentally validated. We demonstrate that the experimental behavior of the pump agrees well with theory and that flow rates can be controlled by changing how well the pump absorbs IR energy. Overall, the TPP enables for fluids to be stored near the edge of the disc and transferred to the center on demand, offering significant advantages to the microfluidic disc platform in terms of the handling and storage of liquids.  相似文献   

14.
This paper presents a passive micromixer on a compact disk (CD) microfluidic platform that performs plasma mixing function. The driving force of CD microfluidic platform including, the centrifugal force due to the system rotation, the Coriolis force as a function of the rotation angular frequency and velocity of liquid. Numerical simulations are performed to investigate the flow characteristics and mixing performance of three CD microfluidic mixers with square-wave, curved and zig-zag microchannels, respectively. Of the three microchannels, the square-wave microchannel is found to yield the best mixing performance, and is therefore selected for design optimization. Four CD microfluidic micromixers incorporating square-wave PDMS microchannels with different widths in the x- and y-directions are fabricated using conventional photolithography techniques. The mixing performance of the four microchannels is investigated both numerically and experimentally. The results show that given an appropriate specification of the microchannel geometry and a CD rotation speed of 2,000 rpm, a mixing efficiency of more than 93 % can be obtained within 5 s.  相似文献   

15.
We simulate a microfluidic conveying system using the many-body dissipative particle dynamics method (MDPD). The conveying system can transport micro parts to a specified spot on a surface by letting them float inside or on top of a droplet, which is pumped by changing the wetting behaviour of the substrate, e.g., with electrowetting on dielectrics. Subsequent evaporation removes the fluid; the micro part remains on its final position, where a second substrate can pick it up. In this way, the wetting control can be separate from the final device substrate. The MDPD method represents a fluid by particles, which are interpreted as a coarse graining of the fluid’s molecules. The choice of interaction forces allows for free surfaces. To introduce a contact angle model, non-moving particles beyond the substrate interact with the fluid particles by MDPD forces such that the required contact angle emerges. The micro part is simulated by particles with spring-type interaction forces.  相似文献   

16.
This paper reports a new portable microfluidic platform, “lab-on-a-display,” that microparticles are manipulated by optoelectronic tweezers (OET) on a liquid crystal display (LCD). The OET has been constructed by assembling a ground layer, a liquid chamber, and a photoconductive layer. Without lens or optical alignments, the LCD image directly forms virtual electrodes on the photoconductive layer for dielectrophoretic manipulation. The lab-on-a-display was first realized by a conventional monochromatic LCD module and a light source brighter than 5,000 lux. It was successfully applied to the programmable manipulation of 45 μm polystyrene beads; more than 100 particles were transported with an optical image-driven control, following the moving edge of the image at every moment. The effects of bead size and bias voltage on the manipulation speed were also investigated. Due to the portability and compatibility for disposable applications, this new platform has potential for programmable particle manipulation or chip-based bioprocessing including cell separation and bead-based analysis.  相似文献   

17.
Magnetophoretic isolation of biological cells in a microfluidic environment has strong relevance in biomedicine and biotechnology. A numerical analysis of magnetophoretic cell separation using magnetic microspheres in a straight and a T-shaped microfluidic channel under the influence of a line dipole is presented. The effect of coupled particle–fluid interactions on the fluid flow and particle trajectories are investigated under different particle loading and dipole strengths. Microchannel flow and particle trajectories are simulated for different values of dipole strength and position, particle diameter and magnetic susceptibility, fluid viscosity and flow velocity in both the microchannel configurations. Residence times of the captured particles within the channel are also computed. The capture efficiency is found to be a function of two nondimensional parameters, α and β. The first parameter denotes the ratio of magnetic to viscous forces, while the second one represents the ratio of channel height to the distance of the dipole from the channel wall. Two additional nondimensional parameters γ (representing the inverse of normalized offset distance of the dipole from the line of symmetry) and σ (representing the inverse of normalized width of the outlet limbs) are found to influence the capture efficiency in the T-channel. Results of this investigation can be applied for the selection of a wide range of operating and design parameters for practical microfluidic cell separators.  相似文献   

18.
We demonstrate a technique to recirculate liquids in a microfluidic channel by alternating predominance of centrifugal and capillary forces to rapidly bring the entire volume of a liquid sample to within one diffusion length, δ, of the surface, even for sample volumes hundreds of times the product of δ and the geometric device area. This is accomplished by repetitive, random sampling of an on-disc sample reservoir to form a thin fluid layer of thickness δ in a microchannel, maintaining contact for the diffusion time, then rapidly exchanging the fluid layer for a fresh aliquot by disc rotation and stoppage. With this technique, liquid volumes of microlitres to millilitres can be handled in many sizes of microfluidic channels, provided the channel wall with greatest surface area is hydrophilic. We present a theoretical model describing the balance of centrifugal and capillary forces in the device and validate the model experimentally.  相似文献   

19.
We numerically investigate the separation of polygonal particles through an array of solid obstacles in microfluidic devices. Particle–fluid, particle–particle and particle–wall interactions are all considered in our numerical method. Firstly, the separation of circular particles based on size is simulated and the relationship of the migration angle and forcing angle by our simulations is coincided with the experimental results. Then, the simulations of polygon particle separation based on shape are carried out. The results show that the shape of particles can be used for particle separation through an array of solid obstacles. Through reasonable design of the shape of obstacles, separation of polygon particles can be achieved. In addition, the results indicate that our numerical method has the potential to substantially improve the design and optimization of microfluidic devices for the separation of particles.  相似文献   

20.
We present a microfluidic centrifuge with no moving parts, relying on a vortex formed between two counterflowing liquid streams. The centrifuge is driven by streams with a speed of 0.6–2.6?m/s, resulting in accelerations applied to samples between 50 and 2,000?g. The liquid flow in the centrifugation chamber and the transport of microparticles are visualized using epi-fluorescence microscopy and bright-field imaging with a high-speed camera. It is found that small particles follow the streamlines of the flow, whereas larger particles show a cross-stream migration. The size separation of different particles is demonstrated, and the experiments clearly indicate that as the flow speed increases, the particles in the vortex are increasingly driven outwards. Per construction, the centrifuge is ideally suited for handling small sample amounts and can be integrated with lab-on-a-chip systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号