首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulation of amyloid beta (Aβ) is one of the pathological hallmarks of Alzheimer’s disease (AD), which can be visualized using [18F]florbetapir positron emission tomography (PET). The aim of this study was to evaluate various parametric methods and to assess their test-retest (TRT) reliability. Two 90 min dynamic [18F]florbetapir PET scans, including arterial sampling, were acquired (n = 8 AD patient, n = 8 controls). The following parametric methods were used; (reference:cerebellum); Logan and spectral analysis (SA), receptor parametric mapping (RPM), simplified reference tissue model2 (SRTM2), reference Logan (rLogan) and standardized uptake value ratios (SUVr(50–70)). BPND+1, DVR, VT and SUVr were compared with corresponding estimates (VT or DVR) from the plasma input reversible two tissue compartmental (2T4k_VB) model with corresponding TRT values for 90-scan duration. RPM (r2 = 0.92; slope = 0.91), Logan (r2 = 0.95; slope = 0.84) and rLogan (r2 = 0.94; slope = 0.88), and SRTM2 (r2 = 0.91; slope = 0.83), SA (r2 = 0.91; slope = 0.88), SUVr (r2 = 0.84; slope = 1.16) correlated well with their 2T4k_VB counterparts. RPM (controls: 1%, AD: 3%), rLogan (controls: 1%, AD: 3%) and SUVr(50–70) (controls: 3%, AD: 8%) showed an excellent TRT reliability. In conclusion, most parametric methods showed excellent performance for [18F]florbetapir, but RPM and rLogan seem the methods of choice, combining the highest accuracy and best TRT reliability.  相似文献   

2.
Background and PurposeAlzheimer’s disease (AD) does not always mean amyloid positivity. [18F]THK-5351 has been shown to be able to detect reactive astrogliosis as well as tau accompanied by neurodegenerative changes. We evaluated the [18F]THK-5351 retention patterns in positron-emission tomography (PET) and the clinical characteristics of patients clinically diagnosed with AD dementia who had negative amyloid PET findings.MethodsWe performed 3.0-T magnetic resonance imaging, [18F]THK-5351 PET, and amyloid PET in 164 patients with AD dementia. Amyloid PET was visually scored as positive or negative. [18F]THK-5351 PET were visually classified as having an intratemporal or extratemporal spread pattern.ResultsThe 164 patients included 23 (14.0%) who were amyloid-negative (age 74.9±8.3 years, mean±standard deviation; 9 males, 14 females). Amyloid-negative patients were older, had a higher prevalence of diabetes mellitus, and had better visuospatial and memory functions. The frequency of the apolipoprotein E ε4 allele was higher and the hippocampal volume was smaller in amyloid-positive patients. [18F]THK-5351 uptake patterns of the amyloid-negative patients were classified into intratemporal spread (n=10) and extratemporal spread (n=13). Neuropsychological test results did not differ significantly between these two groups. The standardized uptake value ratio of [18F]THK-5351 was higher in the extratemporal spread group (2.01±0.26 vs. 1.61±0.15, p=0.001). After 1 year, Mini Mental State Examination (MMSE) scores decreased significantly in the extratemporal spread group (-3.5±3.2, p=0.006) but not in the intratemporal spread group (-0.5±2.8, p=0.916). The diagnosis remained as AD (n=5, 50%) or changed to other diagnoses (n=5, 50%) in the intratemporal group, whereas it remained as AD (n=8, 61.5%) or changed to frontotemporal dementia (n=4, 30.8%) and other diagnoses (n=1, 7.7%) in the extratemporal spread group.ConclusionsApproximately 70% of the patients with amyloid-negative AD showed abnormal [18F]THK-5351 retention. MMSE scores deteriorated rapidly in the patients with an extratemporal spread pattern.  相似文献   

3.
[11C]UCB-J PET for synaptic vesicle glycoprotein 2 A (SV2A) has been proposed as a suitable marker for synaptic density in Alzheimer’s disease (AD). We compared [11C]UCB-J binding for synaptic density and [18F]FDG uptake for metabolism (correlated with neuronal activity) in 14 AD and 11 cognitively normal (CN) participants. We assessed both absolute and relative outcome measures in brain regions of interest, i.e., K1 or R1 for [11C]UCB-J perfusion, VT (volume of distribution) or DVR to cerebellum for [11C]UCB-J binding to SV2A; and Ki or KiR to cerebellum for [18F]FDG metabolism. [11C]UCB-J binding and [18F]FDG metabolism showed a similar magnitude of reduction in the medial temporal lobe of AD –compared to CN participants. However, the magnitude of reduction of [11C]UCB-J binding in neocortical regions was less than that observed with [18F]FDG metabolism. Inter-tracer correlations were also higher in the medial temporal regions between synaptic density and metabolism, with lower correlations in neocortical regions. [11C]UCB-J perfusion showed a similar pattern to [18F]FDG metabolism, with high inter-tracer regional correlations. In summary, we conducted the first in vivo PET imaging of synaptic density and metabolism in the same AD participants and reported a concordant reduction in medial temporal regions but a discordant reduction in neocortical regions.  相似文献   

4.
Quantification of dopamine transporter (DAT) availability with [18F]FE-PE2I PET enables the detection of presynaptic dopamine deficiency and provides a potential progression marker for Parkinson`s disease (PD). Simplified quantification is feasible, but the time window of short acquisition protocols may have a substantial impact on the reliability of striatal binding estimates. Dynamic [18F]FE-PE2I PET data of cross-sectional (33 PD patients, 24 controls), test–retest (9 patients), and longitudinal (12 patients) cohorts were used to assess the variability and reliability of specific binding ratios (SBR) measured during early peak and late pseudo-equilibrium. Receiver operating characteristics area under the curve (PD vs. controls) was high for early (0.996) and late (0.991) SBR. Early SBR provided more favourable effect size, absolute variability, and standard error of measurement than late SBR (caudate: 1.29 vs. 1.23; 6.9% vs. 9.8%; 0.09 vs. 0.20; putamen: 1.75 vs. 1.67; 7.7% vs. 14.0%; 0.08 vs. 0.17). The annual percentage change was comparable for both time windows (−7.2%–8.5%), but decline was significant only for early SBR. Whereas early and late [18F]FE-PE2I PET acquisitions have similar discriminative power to separate PD patients and controls, the early peak equilibrium acquisition can be recommended if [18F]FE-PE2I is used to measure longitudinal changes of DAT availability.  相似文献   

5.
The [18F]-JNJ-64326067-AAA ([18F]-JNJ-067) tau tracer was evaluated in healthy older controls (HCs), mild cognitive impairment (MCI), Alzheimer’s disease (AD), and progressive supranuclear palsy (PSP) participants. Seventeen subjects (4 HCs, 5 MCIs, 5 ADs, and 3 PSPs) received a [11C]-PIB amyloid PET scan, and a tau [18F]-JNJ-067 PET scan 0-90 minutes post-injection. Only MCIs and ADs were amyloid positive. The simplified reference tissue model, Logan graphical analysis distribution volume ratio, and SUVR were evaluated for quantification. The [18F]-JNJ-067 tau signal relative to the reference region continued to increase to 90 min, indicating the tracer had not reached steady state. There was no significant difference in any bilateral ROIs for MCIs or PSPs relative to HCs; AD participants showed elevated tracer relative to controls in most cortical ROIs (P < 0.05). Only AD participants showed elevated retention in the entorhinal cortex. There was off-target signal in the putamen, pallidum, thalamus, midbrain, superior cerebellar gray, and white matter. [18F]-JNJ-067 significantly correlated (p < 0.05) with Mini-Mental State Exam in entorhinal cortex and temporal meta regions. There is clear binding of [18F]-JNJ-067 in AD participants. Lack of binding in HCs, MCIs and PSPs suggests [18F]-JNJ-067 may not bind to low levels of AD-related tau or 4 R tau.  相似文献   

6.
[11C]UCB-J is a novel radioligand that binds to synaptic vesicle glycoprotein 2A (SV2A). The main objective of this study was to determine the 28-day test–retest repeatability (TRT) of quantitative [11C]UCB-J brain positron emission tomography (PET) imaging in Alzheimer’s disease (AD) patients and healthy controls (HCs). Nine HCs and eight AD patients underwent two 60 min dynamic [11C]UCB-J PET scans with arterial sampling with an interval of 28 days. The optimal tracer kinetic model was assessed using the Akaike criteria (AIC). Micro-/macro-parameters such as tracer delivery (K1) and volume of distribution (VT) were estimated using the optimal model. Data were also analysed for simplified reference tissue model (SRTM) with centrum semi-ovale (white matter) as reference region. Based on AIC, both 1T2k_VB and 2T4k_VB described the [11C]UCB-J kinetics equally well. Analysis showed that whole-brain grey matter TRT for VT, DVR and SRTM BPND were –2.2% ± 8.5, 0.4% ± 12.0 and –8.0% ± 10.2, averaged over all subjects. [11C]UCB-J kinetics can be well described by a 1T2k_VB model, and a 60 min scan duration was sufficient to obtain reliable estimates for both plasma input and reference tissue models. TRT for VT, DVR and BPND was <15% (1SD) averaged over all subjects and indicates adequate quantitative repeatability of [11C]UCB-J PET.  相似文献   

7.
Alzheimer’s disease is characterized by regional reductions in cerebral blood flow (CBF). Although the gold standard for measuring CBF is [15O]H2O PET, proxies of relative CBF, derived from the early distribution phase of amyloid and tau tracers, have gained attention. The present study assessed precision of [15O]H2O derived relative and absolute CBF, and compared precision of these measures with that of (relative) CBF proxies. Dynamic [15O]H2O, [18F]florbetapir and [18F]flortaucipir PET test-retest (TrT) datasets with eleven, nine and fourteen subjects, respectively, were included. Analyses were performed using an arterial input model and/or a simplified reference tissue model, depending on the data available. Relative CBF values (i.e. K1/K1′ and/or R1) were obtained using cerebellar cortex as reference tissue and TrT repeatability (i.e. precision) was calculated and compared between tracers, parameters and clinical groups. Relative CBF had significantly better TrT repeatability than absolute CBF derived from [15O]H2O (r = −0.53), while best TrT repeatability was observed for [18F]florbetapir and [18F]flortaucipir R1 (r = −0.23, r = −0.33). Furthermore, only R1 showed, better TrT repeatability for cognitively normal individuals. High precision of CBF proxies could be due to a compensatory effect of the extraction fraction, although changes in extraction fraction could also bias these proxies, but not the gold standard.  相似文献   

8.
Epidemiological studies of environmental risk factors in Parkinson's disease (PD) are dependent on recollection of past exposures based on patients' self‐reports. There are limited studies that have assessed the quality of such data. We conducted a prospective study to determine the test–retest repeatability of environmental and lifestyle factors, and medical data in a PD cohort of Asian ethnicity. A total of 150 consecutive PD patients were initially screened, and 100 were recruited and completed an initial interview. Eighty‐three patients completed the second interview more than 6 months later. Lifestyle habits (such as smoking and coffee consumption) showed excellent agreement (κ > 0.90). For the amount and duration of coffee, tea, alcohol, and cigarette smoking exposure, the total agreement in the response for these factors in the repeat interview were noted in 71.4%, 73.3%, 100%, and 90%, respectively (ICC > 0.83). Medical conditions for which the patients were on treatment, such as diabetes, hypertension, and stroke, revealed very high repeatability (κ = 0.81–0.90). Environmental exposures like well‐water consumption and prior farm‐dwelling produced a moderately good repeatability (κ = 0.66–0.77). In conclusion, our study demonstrates that even over long interval period of more than half a year, self‐report lifestyle exposure information, personal and environmental exposure data can be collected with moderate‐to‐high repeatability from PD patients. © 2008 Movement Disorder Society  相似文献   

9.
Diffusion tensor imaging (DTI) has provided great insights into the microstructural features of the developing brain. However, DTI images are prone to several artifacts and the reliability of DTI scalars is of paramount importance for interpreting and generalizing the findings of DTI studies, especially in the younger population. In this study, we investigated the intrascan test–retest repeatability of four DTI scalars: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in 5‐year‐old children (N = 67) with two different data preprocessing approaches: a volume censoring pipeline and an outlier replacement pipeline. We applied a region of interest (ROI) and a voxelwise analysis after careful quality control, tensor fitting and tract‐based spatial statistics. The data had three subsets and each subset included 31, 32, or 33 directions thus a total of 96 unique uniformly distributed diffusion encoding directions per subject. The repeatability of DTI scalars was evaluated with intraclass correlation coefficient (ICC(3,1)) and the variability between test and retest subsets. The results of both pipelines yielded good to excellent (ICC(3,1) > 0.75) reliability for most of the ROIs and an overall low variability (<10%). In the voxelwise analysis, FA and RD had higher ICC(3,1) values compared to AD and MD and the variability remained low (<12%) across all scalars. Our results suggest high intrascan repeatability in pediatric DTI and lend confidence to the use of the data in future cross‐sectional and longitudinal studies.  相似文献   

10.
The use of selective serotonin reuptake inhibitors has shown functional improvement after stroke. Despite this, the role of serotoninergic neurotransmission after cerebral ischemia evolution and its involvement in functional recovery processes are still largely unknown. For this purpose, we performed in parallel in vivo magnetic resonance imaging and positron emission tomography (PET) with [11C]DASB and [18F]altanserin at 1, 3, 7, 14, 21, and 28 days after middle cerebral artery occlusion (MCAO) in rats. In the ischemic territory, PET with [11C]DASB and [18F]altanserin showed a dramatic decline in serotonin transporter (SERT) and 5-HT2A binding potential in the cortex and striatum after cerebral ischemia. Interestingly, a slight increase in [11C]DASB binding was observed from days 7 to 21 followed by the uppermost binding at day 28 in the ipsilateral midbrain. In contrast, no changes were observed in the contralateral hemisphere by using both radiotracers. Likewise, both functional and behavior testing showed major impaired outcome at day 1 after ischemia onset followed by a recovery of the sensorimotor function and dexterity from day 21 to day 28 after cerebral ischemia. Taken together, these results might evidence that SERT changes in the midbrain could have a key role in the functional recovery process after cerebral ischemia.  相似文献   

11.
Alzheimer’s disease (AD) is a devastating neurological degenerative disorder and is the most common cause of dementia in the elderly. Clinically, AD manifests with memory and cognitive decline associated with deposition of hallmark amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs). Although the mechanisms underlying AD remains unclear, two hypotheses have been proposed. The established amyloid hypothesis states that Aβ accumulation is the basis of AD and leads to formation of NFTs. In contrast, the two-hit vascular hypothesis suggests that early vascular damage leads to increased accumulation of Aβ deposits in the brain. Multiple studies have reported significant morphological changes of the cerebrovasculature which can result in severe functional deficits. In this review, we delve into known structural and functional vascular alterations in various mouse models of AD and the cellular and molecular constituents that influence these changes to further disease progression. Many studies shed light on the direct impact of Aβ on the cerebrovasculature and how it is disrupted during the progression of AD. However, more research directed towards an improved understanding of how the cerebrovasculature is modified over the time course of AD is needed prior to developing future interventional strategies.  相似文献   

12.
Primary brain tumors (PBT), in particular gliomas, are among the most difficult neoplasms to treat, necessitating good quality imaging to guide clinicians at many junctures. Current imaging modalities, including [18F] fluorodeoxyglucose (FDG) PET/CT, MRI and MR spectroscopy (MRS), have various limitations, particularly with regard to differentiating tumor from radiation induced necrosis (RIN) and from normal cerebral metabolic uptake. [18F] fluorocholine (FCH) is an analog of choline with potentially optimal imaging characteristics, as pharmacokinetic studies with FCH conducted in patients showed minimal FCH uptake by normal brain parenchyma, whereas high-grade tumors are known to have increased choline uptake. We present two cases of our early experience with FCH PET/CT for patients with PBT and discuss the potential use and comparative limitations of this imaging modality.  相似文献   

13.
The high-affinity radioligand [18F]fallypride (FP) is frequently used for quantification of striatal/extrastriatal D2/3 receptors and the receptor occupancies of antipsychotics (APs). Its 110 minutes half-life allows long scan durations. However, the optimum scan duration is a matter of debate. This investigation focuses on scan-duration-related effects on simplified reference tissue model (SRTM) results and the time point of transient equilibrium in a large sample of dynamic FP positron emission tomography (PET) scans. Fifty drug-free and 50 AP-treated subjects underwent FP-PET scans (180 minutes scan duration). The binding potential (BPND) of the putamen, thalamus, and temporal cortex were calculated using the SRTM and the transient equilibrium model. Furthermore, receptor occupancies were calculated for AP-treated patients. Transient equilibrium in the unblocked putamen occurred after 121±29.6 minutes. The transient equilibrium occurred much earlier in the extrastriatal regions or under AP treatment. Stepwise scan shortening caused BPND underestimations of 0.58% for the first 10-minute reduction (putamen, SRTM), finally reaching 5.76% after 1 hour scan-time reduction. We observed preferential extrastriatal AP binding irrespective of the analytical method. [18F]fallypride scan durations of 180 minutes reliably reach equilibrium even in D2/3-receptor-rich regions. Moderate reductions in FP scan durations only caused small changes to SRTM results even in receptor-rich regions. Apparently, the D2/3 receptor occupancy results of APs, especially preferential extrastriatal binding observations, are not relevantly biased by inappropriate scan durations.  相似文献   

14.
Schizophrenia (SZ) is a severe psychiatric illness associated with an elevated risk for developing Alzheimer’s disease (AD). Both SZ and AD have white matter abnormalities and cognitive deficits as core disease features. We hypothesized that aging in SZ patients may be associated with the development of cerebral white matter deficit patterns similar to those observed in AD. We identified and replicated aging-related increases in the similarity between white matter deficit patterns in patients with SZ and AD. The white matter “regional vulnerability index” (RVI) for AD was significantly higher in SZ patients compared with healthy controls in both the independent discovery (Cohen’s d = 0.44, P = 1·10–5, N = 173 patients/230 control) and replication (Cohen’s d = 0.78, P = 9·10–7, N = 122 patients/64 controls) samples. The degree of overlap with the AD deficit pattern was significantly correlated with age in patients (r = .21 and .29, P < .01 in discovery and replication cohorts, respectively) but not in controls. Elevated RVI-AD was significantly associated with cognitive measures in both SZ and AD. Disease and cognitive specificities were also tested in patients with mild cognitive impairment and showed intermediate overlap. SZ and AD have diverse etiologies and clinical courses; our findings suggest that white matter deficits may represent a key intersecting point for these 2 otherwise distinct diseases. Identifying mechanisms underlying this white matter deficit pattern may yield preventative and treatment targets for cognitive deficits in both SZ and AD patients.  相似文献   

15.
In this study, we show a basis function method (BAFPIC) for voxelwise calculation of kinetic parameters (K1, k2, k3, Ki) and blood volume using an irreversible two-tissue compartment model. BAFPIC was applied to rat ischaemic stroke micro-positron emission tomography data acquired with the hypoxia tracer [18F]fluoromisonidazole because irreversible two-tissue compartmental modelling provided good fits to data from both hypoxic and normoxic tissues. Simulated data show that BAFPIC produces kinetic parameters with significantly lower variability and bias than nonlinear least squares (NLLS) modelling in hypoxic tissue. The advantage of BAFPIC over NLLS is less pronounced in normoxic tissue. Ki determined from BAFPIC has lower variability than that from the Patlak–Gjedde graphical analysis (PGA) by up to 40% and lower bias, except for normoxic tissue at mid-high noise levels. Consistent with the simulation results, BAFPIC parametric maps of real data suffer less noise-induced variability than do NLLS and PGA. Delineation of hypoxia on BAFPIC k3 maps is aided by low variability in normoxic tissue, which matches that in Ki maps. BAFPIC produces Ki values that correlate well with those from PGA (r2=0.93 to 0.97; slope 0.99 to 1.05, absolute intercept <0.00002 mL/g per min). BAFPIC is a computationally efficient method of determining parametric maps with low bias and variance.  相似文献   

16.
Alzheimer’s disease is a progressive and fatal neurodegenerative disorder that starts many years before the onset of cognitive symptoms. Identifying novel biomarkers for Alzheimer’s disease has the potential for patient risk stratification, early diagnosis, and disease monitoring in response to therapy. A novel class of biomarkers is extracellular vesicles given their sensitivity and specificity to specific diseases. In addition, extracellular vesicles can be used as novel biological therapeutics given their ability to efficiently and functionally deliver therapeutic cargo. This is critical given the huge unmet need for novel treatment strategies for Alzheimer’s disease. This review summarizes and discusses the most recent findings in this field.  相似文献   

17.
Since the establishment of the biomarker-based A-T-N (Amyloid/Tau/Neurodegeneration) framework in Alzheimer’s disease (AD), the diagnosis of AD has become more precise, and cerebrospinal fluid tests and positron emission tomography examinations based on this framework have become widely accepted. However, the A-T-N framework does not encompass the whole spectrum of AD pathologies, and problems with invasiveness and high cost limit the application of the above diagnostic methods aimed at the central nervous system. Therefore, we suggest the addition of an “X” to the A-T-N framework and a focus on peripheral biomarkers in the diagnosis of AD. In this review, we retrospectively describe the recent progress in biomarkers based on the A-T-N-X framework, analyze the problems, and present our perspectives on the diagnosis of AD.  相似文献   

18.
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and there is currently no cure. Neural circuit dysfunction is the fundamental mechanism underlying the learning and memory deficits in patients with AD. Therefore, it is important to understand the structural features and mechanisms underlying the deregulated circuits during AD progression, by which new tools for intervention can be developed. Here, we briefly summarize the most recently established cutting-edge experimental approaches and key techniques that enable neural circuit tracing and manipulation of their activity. We also discuss the advantages and limitations of these approaches. Finally, we review the applications of these techniques in the discovery of circuit mechanisms underlying β-amyloid and tau pathologies during AD progression, and as well as the strategies for targeted AD treatments.  相似文献   

19.
Dynamic functional connectivity (dFC) has been increasingly used to characterize the brain transient temporal functional patterns and their alterations in diseased brains. Meanwhile, naturalistic neuroimaging paradigms have been an emerging approach for cognitive neuroscience with high ecological validity. However, the test–retest reliability of dFC in naturalistic paradigm neuroimaging is largely unknown. To address this issue, we examined the test–retest reliability of dFC in functional magnetic resonance imaging (fMRI) under natural viewing condition. The intraclass correlation coefficients (ICC) of four dFC statistics including standard deviation (Std), coefficient of variation (COV), amplitude of low frequency fluctuation (ALFF), and excursion (Excursion) were used to measure the test–retest reliability. The test–retest reliability of dFC in naturalistic viewing condition was then compared with that under resting state. Our experimental results showed that: (a) Global test–retest reliability of dFC was much lower than that of static functional connectivity (sFC) in both resting‐state and naturalistic viewing conditions; (b) Both global and local (including visual, limbic and default mode networks) test–retest reliability of dFC could be significantly improved in naturalistic viewing condition compared to that in resting state; (c) There existed strong negative correlation between sFC and dFC, weak negative correlation between dFC and dFC‐ICC (i.e., ICC of dFC), as well as weak positive correlation between dFC‐ICC and sFC‐ICC (i.e., ICC of sFC). The present study provides novel evidence for the promotion of naturalistic paradigm fMRI in functional brain network studies.  相似文献   

20.
Alzheimer’s disease (AD) is the most frequent cause of dementia, where the abnormal accumulation of beta-amyloid (Aβ) and tau lead to neurodegeneration as well as loss of cognitive, behavioral, and functional abilities. The present review analyzes AD from a cross-cultural neuropsychological perspective, looking at differences in culture-associated variables, neuropsychological test performance and biomarkers across ethnic and racial groups. Studies have found significant effects of culture, preferred language, country of origin, race, and ethnicity on cognitive test performance, although the definition of those grouping terms varies across studies. Together, with the substantial underrepresentation of minority groups in research, the inconsistent classification might conduce to an inaccuratte diagnosis that often results from biases in testing procedures that favor the group to which test developers belong. These biases persist even after adjusting for variables related to disadvantageous societal conditions, such as low level of education, unfavorable socioeconomic status, health care access, or psychological stressors. All too frequently, educational level is confounded with culture. Minorities often have lower educational attainment and lower quality of education, causing differences in test results that are then attributed to culture. Higher levels of education are also associated with increased cognitive reserve, a protective factor against cognitive decline in the presence of neurodegeneration. Biomarker research suggests there might be significant differences in specific biomarker profiles for each ethnicity/race in need of accurate cultural definitions to adequately predict risk and disease progression across ethnic/racial groups. Overall, this review highlights the need for diversity in all domains of AD research that lack inclusion and the collection of relevant information from these groups.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13311-022-01193-z.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号