首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用地球重力位模型计算重力和重力梯度   总被引:3,自引:0,他引:3  
王东明 《地球物理学报》1999,42(Z1):108-114
高阶高精度地球重力场模型具有广泛的用途。本文利用地球重力位模型计算重力和重力梯度在应用中很有实用阶值,同时也是计算重力场其它量的关键。利用伪局部笛卡尔坐标与球坐标的关系计算了重力与重力梯度在伪局部笛卡尔坐标系下的分量;利用张量变换的原理给出了已知重力与重力梯度在某一坐标系下的分量求它们在另一坐标系下分量的方法,并具体给出了重力与重力梯度在局部笛卡儿坐标系下的分量计算公式,同时还给出计算重力场五参量与垂线偏差的计算公式,本研究推进了地球重力场的可视化进程。  相似文献   

2.
The ‘depth from extreme points’ method is an important tool to estimate the depth of sources of gravity and magnetic data. In order to interpret gravity gradient tensor data conveniently, formulas for the tensor data form regarding depth from the extreme points method were calculated in this paper. Then, all of the gradient tensor components were directly used to interpret the causative source. Beyond the gzz component, also the gxx and gyy components can be used to obtain depth information. In addition, the total horizontal derivative of the depth from extreme points of the gradient tensor can be used to describe the edge information of geologic sources. In this paper, we investigated the consistency of the homogeneity degree calculated by using the different components, which leads to the calculated depth being confirmed. Therefore, a more integrated interpretation can be obtained by using the gradient tensor components. Different synthetic models were used with and without noise to test the new approach, showing stability, accuracy and speed. The proposed method proved to be a useful tool for gradient tensor data interpretation. Finally, the proposed method was applied to full tensor gradient data acquired over the Vinton Salt Dome, Louisiana, USA, and the results are in agreement with those obtained in previous research studies.  相似文献   

3.
When anomalous gravity gradient signals provide a large signal‐to‐noise ratio, airborne and marine surveys can be considered with wide line spacing. In these cases, spatial resolution and sampling requirements become the limiting factors for specifying the line spacing, rather than anomaly detectability. This situation is analysed by generating known signals from a geological model and then sub‐sampling them using a simulated airborne gravity gradient survey with a line spacing much wider than the characteristic anomaly size. The data are processed using an equivalent source inversion, which is used subsequently to predict and grid the field in‐between the survey lines by means of forward calculations. Spatial and spectral error analysis is used to quantify the accuracy and resolution of the processed data and the advantages of acquiring multiple gravity gradient components are demonstrated. With measurements of the full tensor along survey lines spaced at 4 × 4 km, it is shown that the vertical gravity gradient can be reconstructed accurately over a bandwidth of 2 km with spatial root‐mean square errors less than 30%. A real airborne full‐tensor gravity gradient survey is presented to confirm the synthetic analysis in a practical situation.  相似文献   

4.
Only with satellites it is possible to cover the entire Earth densely with gravity field related measurements of uniform quality within a short period of time. However, due to the altitude of the satellite orbits, the signals of individual local masses are strongly damped. Based on the approach of Petrovskaya and Vershkov we determine the gravity gradient tensor directly from the spherical harmonic coefficients of the recent EIGEN-GL04C combined model of the GRACE satellite mission. Satellite gradiometry can be used as a complementary tool to gravity and geoid information in interpreting the general geophysical and geodynamical features of the Earth. Due to the high altitude of the satellite, the effects of the topography and the internal masses of the Earth are strongly damped. However, the gradiometer data, which are nothing else than the second order spatial derivatives of the gravity potential, efficiently counteract signal attenuation at the low and medium frequencies. In this article we review the procedure for estimating the gravity gradient components directly from spherical harmonics coefficients. Then we apply this method as a case study for the interpretation of possible geophysical or geodynamical patterns in Iran. We found strong correlations between the cross-components of the gravity gradient tensor and the components of the deflection of vertical, and we show that this result agrees with theory. Also, strong correlations of the gravity anomaly, geoid model and a digital elevation model were found with the diagonal elements of the gradient tensor.  相似文献   

5.
We present a method to calculate the full gravity gradient tensors from pre-existing vertical gravity data using the cosine transform technique and discuss the calculated tensor accuracy when the gravity anomalies are contaminated by noise. Gravity gradient tensors computation on 2D infinite horizontal cylinder and 3D ??Y?? type dyke models show that the results computed with the DCT technique are more accurate than the FFT technique regardless if the gravity anomalies are contaminated by noise or not. The DCT precision has increased 2 to 3 times from the standard deviation. In application, the gravity gradient tensors of the Hulin basin calculated by DCT and FFT show that the two results are consistent with each other. However, the DCT results are smoother than results computed with FFT. This shows that the proposed method is less affected by noise and can better reflect the fault distribution.  相似文献   

6.
The gravity gradient tensor (GGT) is deduced from products of second-order derivatives of the gravitational potential. A new method based on the invariants of the GGT has been proposed in this research to interpret gravity data due to sphere, infinite horizontal cylinder and semi-infinite vertical cylinder. The method estimates the depth of these simple causative sources from the multiplication of the maximum of the gravity vertical component by the maximum value of the invariants I 1 to I 2 ratio. To show the reliability and correctness of the estimated depths on 3-D models, the method has been tested using theoretical data with and without random noise. In addition, I have applied the method to a field-data example in Texas, USA and the depth obtained by the present method is compared with those published in the literature.  相似文献   

7.
位场全张量梯度数据以其信息量大、含有更高频的信号成分,能更好地描述小的异常特征等优点在地球物理领域中得到广泛应用.边界检测是位场解释中不可缺少的任务,需要新的边界探测器来处理位场梯度张量数据.为了充分利用位场梯度张量数据的多信息成分,本文定义了方向总水平导数和加强方向总水平导数,并利用其定义新的边界检测器.为了能同时显示不同振幅大小异常的边界,本文对其进行了归一化处理.通过模型试验,证明了归一化方法能更加清晰准确地显示浅部和深部的地质体边界信息.最后将该边界检测方法用于加拿大圣乔治湾实际测得全张量重力梯度数据和中国朱日和地区的磁异常数据中,并得到了较好的边界检测结果.  相似文献   

8.
基于平稳随机过程的噪声模型,应用小波变换原理对数字化地磁观测资料进行高频噪声剔除,达到净化信号,又不丢失高频有用信息的目的。应用实例表明,小波方法具有良好的效果。  相似文献   

9.
Commonly, geomagnetic prospection is performed via scalar magnetometers that measure values of the total magnetic intensity. Recent developments of superconducting quantum interference devices have led to their integration in full tensor magnetic gradiometry systems consisting of planar‐type first‐order gradiometers and magnetometers fabricated in thin‐film technology. With these systems measuring directly the magnetic gradient tensor and field vector, a significantly higher magnetic and spatial resolution of the magnetic maps is yield than those produced via conventional magnetometers. In order to preserve the high data quality in this work, we develop a workflow containing all the necessary steps for generating the gradient tensor and field vector quantities from the raw measurement data up to their integration into high­resolution, low­noise, and artefactless two‐dimensional maps of the magnetic field vector. The gradient tensor components are processed by superposition of the balanced gradiometer signals and rotation into an Earth‐centred Earth‐fixed coordinate frame. As the magnetometers have sensitivity lower than that of gradiometers and the total magnetic intensity is not directly recorded, we employ Hilbert‐like transforms, e.g., integration of the gradient tensor components or the conversion of the total magnetic intensity derived by calibrated magnetometer readings to obtain these values. This can lead to a better interpretation of the measured magnetic anomalies of the Earth's magnetic field that is possible from scalar total magnetic intensity measurements. Our conclusions are drawn from the application of these algorithms on a survey acquired in South Africa containing full tensor magnetic gradiometry data.  相似文献   

10.
Due to its simplicity, stability, and efficiency, the use of right rectangular prisms is still widespread for potential field modelling and inversion. It is well known that modelling the subsurface with Cartesian grids has important consequences in terms of accuracy of the results. In this paper, we review the main issues that geophysicists face in day‐to‐day work when trying to use right rectangular prisms for performing gravity or full tensor gravity modelling and inversions. We demonstrate the results both theoretically and through Monte Carlo simulations, also exploiting concepts from fractal geometry. We believe that the guidelines contained in this paper may suggest a good practice for the day‐to‐day work of geophysicists dealing with gravity and full tensor gravity data.  相似文献   

11.
The increased popularity of airborne measurements of the gravity gradient tensor for resource studies and geological mapping has resulted in a new awareness of the importance of terrain effects. In these measurements, the terrain effect often overwhelms that of the underlying crust and it becomes important to formulate a strategy for taking it into account when presenting the data and when inverting the data into density models. Using newly acquired data from Northern Sweden, we first attempted to estimate a variable terrain density model by inverting the data using a terrain model with a laterally varying density. Using data weights related to the topography variations, we find the best estimate of the lateral variation of the terrain density. We translate this model into a full three-dimensional model such that all columns have the same vertical centre of mass as estimated from inspecting the radially averaged power spectrum of the area. This then defines a reference model for subsequent three-dimensional inversion of the gravity gradient tensor dataset. We tested this approach first on synthetic data calculated from the measured topography including two density anomalies before we applied it to the measured data. The result is a model in which the surface density variations are propagated downwards in a systematic manner now in better agreement with measured densities of rock samples in the area.  相似文献   

12.
基于非全张量卫星重力梯度数据的张量不变量法   总被引:3,自引:1,他引:2       下载免费PDF全文
吴星  王凯  冯炜  汪涛 《地球物理学报》2011,54(4):966-976
在非全张量卫星重力梯度观测数据的处理过程中,由于卫星姿态角误差、梯度观测数据误差和非全张量观测等原因,重力梯度值从卫星重力梯度仪系转换到地固系后,精度损失严重.本文研究了张量不变量法以解决上述问题.首先在重力梯度张量不变量线性化的基础上,建立了基于卫星轨道面的不变量观测模型,完整地推导了两类重力梯度张量不变量的球近似和...  相似文献   

13.
In this paper, we present a case study on the use of the normalized source strength (NSS) for interpretation of magnetic and gravity gradient tensors data. This application arises in exploration of nickel, copper and platinum group element (Ni‐Cu‐PGE) deposits in the McFaulds Lake area, Northern Ontario, Canada. In this study, we have used the normalized source strength function derived from recent high resolution aeromagnetic and gravity gradiometry data for locating geological bodies. In our algorithm, we use maxima of the normalized source strength for estimating the horizontal location of the causative body. Then we estimate depth to the source and structural index at that point using the ratio between the normalized source strength and its vertical derivative calculated at two levels; the measurement level and a height h above the measurement level. To discriminate more reliable solutions from spurious ones, we reject solutions with unreasonable estimated structural indices. This method uses an upward continuation filter which reduces the effect of high frequency noise. In the magnetic case, the advantage is that, in general, the normalized magnetic source strength is relatively insensitive to magnetization direction, thus it provides more reliable information than standard techniques when geologic bodies carry remanent magnetization. For dipping gravity sources, the calculated normalized source strength yields a reliable estimate of the source location by peaking right above the top surface. Application of the method on aeromagnetic and gravity gradient tensor data sets from McFaulds Lake area indicates that most of the gravity and magnetic sources are located just beneath a 20 m thick (on average) overburden and delineated magnetic and gravity sources which can be probably approximated by geological contacts and thin dikes, come up to the overburden.  相似文献   

14.
程一  李桐林  周帅 《地球物理学报》2022,65(3):1125-1134
航空重力梯度测量技术可快速、高效地完成面积性重力梯度数据采集工作,在矿产资源勘查、军事目标探测等诸多科学领域具有广泛的应用.而航空重力梯度动态测量误差补偿方法是重力梯度动态测量数据处理中的一项重要工作.本文首先对旋转式重力梯度仪误差传递机理进行了定量分析,在综合考虑重力梯度仪系统非理想因素相互作用的情况下,建立了多种非...  相似文献   

15.
卫星重力梯度测量与地球引力场的精度研究   总被引:1,自引:0,他引:1  
本文根据地球引力位的球谐函数展开式,利用重力梯度张量各分量导出了位系数模型的精度估计公式.从三方面进行了研究:假定卫星重力梯度仪测量精度,探讨用重力梯度数据确定地球重力场模型的精度;求出位系数模型和大气阻力引起的重力梯度卫星的轨道误差;最后,反求轨道误差和位系数误差对重力梯度测量值的影响.数值计算表明,与地面技术和常规卫星方法相比,卫星梯度测量可使重力场模型的精度至少提高3-5倍;利用重力梯度张量全分量求得的重力值精度比单用径向分量Vrr的结果提高40%以上;若仅顾及位系数模型和大气阻力误差,则轨道误差对梯度测量值的影响△Vi3(i=3,2,1)至少可分别在1/4和1/3弧圈内达到△Vi3≤σ(仪器精度).  相似文献   

16.
重力梯度数据相对于传统重力数据,能够更细致、准确地描述地球浅部构造和研究矿产资源分布等信息.本文采用共轭梯度算法,在加权密度域求解重力梯度数据三维聚焦反演最优化问题,以恢复地下三维密度分布,目标函数包括数据不拟合函数和最小支撑稳定函数.首先,在推导目标函数对加权密度的一阶导数时,为了得到更合理的计算公式,我们考虑变加权函数中含有密度变量;此外,本文通过密度上下限约束,改善了传统聚焦反演中聚焦因子选取困难的问题.新算法获得的反演结果,对聚焦因子的选择约束较少,相比传统聚焦算法,能够更容易的获得理想结果.将方法应用于理论模型验证其有效性和正确性,并应用本文方法处理文顿盐丘地区的航空全张量重力梯度数据,得到了与已知地质信息匹配的密度分布,表明本文方法具有处理实际数据的能力.  相似文献   

17.
重力和重力梯度数据联合聚焦反演方法   总被引:8,自引:5,他引:3       下载免费PDF全文
重力数据包含较多的低频信息,重力梯度数据包含较多的高频信息,将重力数据和重力梯度数据进行联合反演得到的结果更加可信.本文基于聚焦反演方法,实现了这一过程.因为联合反演中分量种类增加,所以计算灵敏度矩阵所需要的时间增加,为此,本文提出了一种快速计算灵敏度矩阵的方法.因为联合反演对内存的要求增大,本文选择有限内存BFGS拟牛顿法求解反演问题.本文通过再加权的方法实现深度加权.文中利用单一分量的反演结果来预测异常体的埋深信息,随后将埋深信息结合到深度加权函数中,将其用于多分量组合反演计算.给出了模型试验,发现预测得到的异常体的埋深信息与其实际埋深存在偏差,但是将这一信息应用到反演计算,能够得到与真实模型一致的结果.之后,本文通过模型试验来探究重力和重力梯度联合反演的优势,发现将重力和重力梯度数据联合,能够识别出额外的噪声,反演得到的模型更加合理.但是,对于不同分量组合得到的反演结果是相近的,反演模型的提高很小.最后,将联合反演方法应用到美国路易斯安那州Vinton岩丘的实际数据中,结果显示,将重力和重力梯度数据联合反演,反演模型得到了提高,反演得到的结果与地质资料吻合.  相似文献   

18.
由于金属矿区地震记录中随机噪声性质复杂且信噪比低,常规降噪方法难以达到预期的滤波效果.时频峰值滤波(TFPF)方法是实现低信噪比地震勘探记录中随机噪声压制的有效方法,但其在复杂地震勘探随机噪声下时窗参数优化问题仍难以解决.本文充分利用地震勘探噪声的统计特性,结合Shapiro-Wilk(SW)统计量辨识地震勘探记录中的微弱有效信号,提出基于SW统计量的自适应时频峰值滤波降噪方法(S-TFPF).在S-TFPF方案中,对于有效信号集中区,S-TFPF方法根据信号频率特征,选择有利于信号保持的较短时窗长度;对于噪声集中区,按噪声方差自适应增加时窗长度,增强随机噪声压制能力.S-TFPF应用于合成记录和共炮点记录的滤波结果表明,与传统时频峰值滤波方法相比,S-TFPF方法可以有效抑制低信噪比地震勘探记录中的随机噪声,更好地恢复出同相轴.  相似文献   

19.
Tensor algebra provides a robust framework for multi-dimensional seismic data processing. A low-rank tensor can represent a noise-free seismic data volume. Additive random noise will increase the rank of the tensor. Hence, tensor rank-reduction techniques can be used to filter random noise. Our filtering method adopts the Candecomp/Parafac decomposition to approximates a N-dimensional seismic data volume via the superposition of rank-one tensors. Similar to the singular value decomposition for matrices, a low-rank Candecomp/Parafac decomposition can capture the signal and exclude random noise in situations where a low-rank tensor can represent the ideal noise-free seismic volume. The alternating least squares method is adopted to compute the Candecomp/Parafac decomposition with a provided target rank. This method involves solving a series of highly over-determined linear least-squares subproblems. To improve the efficiency of the alternating least squares algorithm, we uniformly randomly sample equations of the linear least-squares subproblems to reduce the size of the problem significantly. The computational overhead is further reduced by avoiding unfolding and folding large dense tensors. We investigate the applicability of the randomized Candecomp/Parafac decomposition for incoherent noise attenuation via experiments conducted on a synthetic dataset and field data seismic volumes. We also compare the proposed algorithm (randomized Candecomp/Parafac decomposition) against multi-dimensional singular spectrum analysis and classical prediction filtering. We conclude the proposed approach can achieve slightly better denoising performance in terms of signal-to-noise ratio enhancement than traditional methods, but with a less computational cost.  相似文献   

20.
Aspects of the interpretation of measured data on the gravity gradient tensor (GGT) are examined. The problem is posed in relation to the great progress achieved in recent years in the development of instrumentation and the method of GGT measurements on mobile carriers. In our opinion, the new methods of measurement and the new data obtained with their help require the development of new methods of interpretation of potential fields. The paper addresses two methods taking advantage of simultaneous measurements of all components of the GGT and anomalies of the gravitaty field V z. It is shown that the joint analysis of all GGT components can provide independent constraints on the noise level in various components. The method of tensor deconvolution proposed in the paper is a tensor analogue of the Euler method. The method is based on the calculation of invariants and is, therefore, stable with respect to the orientation uncertainties of the measuring system. The method provides means for estimating the structural index and, therefore, is particularly effective in the treatment of fields that contain isometric and/or elongated anomalies. The calculation of invariants and the tensor ratio can also be used for the development of procedures enabling automatic estimation of the axis strike azimuths of elongated anomaly-forming bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号