首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report preparation of graphene oxide (GO) from expanded graphite (EG) via a modified Hummers method. GO/PVDF composites films were obtained using solvent N, N‐Dimethylformamide (DMF) and cosolvent comprising deionized water/DMF combination. X‐ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses revealed that the main crystal structure of the composite films is β‐phase, and use cosolvent method tends to favor the formation of β‐phase. Scanning electron microscopy (SEM) was used to investigate the microstructure of composite films. Storage modulus and loss modulus were measured by Dynamic mechanical analysis (DMA). Broadband dielectric spectrum tests showed an increase in the dielectric constant of the GO/PVDF composite films with the rising content of GO, and by cosolvent method could improve the dielectric constant while reducing the dielectric loss. Our method that uses GO as an additive and deionized water/DMF as the cosolvent provides a promising and low‐cost pathway to obtain high dielectric materials. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41577.  相似文献   

2.
Summary A series of thermosetting polymer/ceramic composites were prepared. Three kinds of thermosetting polymers, i.e. cyanate resin, bismaleimide resin, and epoxy resin, were used as matrixes, and BaTiO3 particles were as fillers. The dielectric properties of these composites were investigated. Experimental data of the dielectric constants were fitted to several theoretical equations in order to obtain the best-fitting equations of the dielectric constants of these composites. The result indicates that the dielectric constants of composites all increase with the increase of BaTiO3 content. Using bismaleimide resin and epoxy resin as matrixes, the dielectric losses both increase obviously as the amount of BaTiO3 particles is increased, but the dielectric loss of cyanate/BaTiO3 composite decreases. With the increase of the frequency, the variation ranges of the dielectric constant and dielectric loss of cyanate/BaTiO3 composite are both the smallest. The predications of the effective dielectric constants by Lichterecker mixing rule are in good agreement with experiment data.  相似文献   

3.
In this work, we prepared a series of poly(vinylidene fluoride) (PVDF)–surface functionalized BiFeO3 (h‐BFO)–Sodium dodecyl sulfate (SDS) composite films by solvent casting method to investigate the effect of SDS in the composites. The X‐ray diffraction confirmed that the structure of h‐BFO significantly changed in the PVDF‐(h‐BFO)‐SDS composite in comparison with the rhombohedral structure of pure BiFeO3. The microscopic study illustrated that the composite with a higher percentage of SDS content facilitated the dispersion as well as proper distribution of ceramic particles in the polymer matrix. The presence of different functionalities of respective polymer and the modified fillers was confirmed by FTIR Spectrophotometer. The dielectric and electrical study done by Impedance Analyzer revealed that the SDS treated surface functionalized composites showed relatively higher dielectric properties than that of two phase composites and pure polymer. Finally, the ferroelectric properties of the composite films done by P‐E loop tracer revealed that the SDS‐treated composites showed an enhanced remanent polarization. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45040.  相似文献   

4.
采用热压法分别制备了PZT/PVDF,PT/PVDF O-3型压电复合材料,所得材料具有较高的压电常数和良好的可柔性加工性能。并分析了无机压电陶瓷种类、含量对复合材料介电性能和压电性能的影响。  相似文献   

5.
We examined the effects of mixing temperature on the dielectric properties of polymethylmethacrylate (PMMA)‐pristine bentonite nanocomposites by using X‐ray diffraction, FT‐IR and dielectric spectroscopies. The samples were prepared during 8 hours at temperatures 265 K, 273 K, 281 K, 289 K and 298 K without any intercalative agent and the PMMA to pristine bentonite weight ratio was chosen as 1 : 10. It was observed that with decreasing the mixing temperatures, the permittivity decreases and the dielectric relaxation displaces towards the lower frequencies with the decrease of mixing temperatures. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39907.  相似文献   

6.
The complex dielectric permittivity, alternating‐current electrical conductivity, electric modulus, and impedance spectra of polymeric nanocomposite (PNC) films consisting of a poly(vinyl alcohol) (PVA) matrix dispersed with nanosize particles of titanium dioxide (TiO2); (i.e., PVA–x wt % TiO2, where x is 0, 1, 3, or 5) were investigated in the frequency range 20 Hz to 1 MHz at ambient temperature. A detailed analysis of the results showed that the values of the dielectric and electrical parameters of these PNC‐based nanodielectric films varied anomalously with increasing TiO2 concentration. The temperature‐dependent dielectric characterization of the PVA–3 wt % TiO2 film revealed that the dielectric polarization at a fixed frequency increased nonlinearly with increasing temperature. The temperature‐dependent electric modulus relaxation time values of the nanodielectric film obeyed Arrhenius behavior. The X‐ray diffraction study confirmed that the crystalline phase of the PVA matrix decreased with increasing TiO2 concentration; this suggested that the interaction of the TiO2 nanoparticles caused some destruction of the hydroxyl group dipolar ordering in the hydrogen‐bonded crystalline structure of the pristine PVA matrix. The intensities of the diffraction peaks of the TiO2 nanofiller were enhanced as its concentration increased in these nanodielectrics; this confirmed the existence of TiO2 nanoparticles inside the crystalline phases of the PVA matrix. The surface morphology of the films was examined by the study of their scanning electron micrographs. The feasibility of using these flexible polymeric nanodielectric films as electrical insulators and dielectric substrates in low‐power microelectronic devices operated at audio‐ and radio‐frequency electric fields was explored. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44568.  相似文献   

7.
The well distributed and electroactive polyvinylidene fluoride (PVDF)/magnetite nanocomposites were successfully fabricated using a mixed solvent system (THF/DMF). Dynamic mechanical properties of the fabricated PVDF/magnetite nanocomposites indicate significant enhancements in the storage modulus as compared with that of neat PVDF. By adding 2 wt % magnetite nanoparticles into the PVDF matrix, the thermal stability of nanocomposites could be enhanced about 26°C as compared with that of PVDF. The β‐phase fraction of PVDF is significantly enhanced with increasing the voltage of electric field poling. The piezoelectric responses of PVDF/magnetite films are extensively increased about five times in magnitude with applied strength of electrical field at 35 MV/m. The change of piezoelectric responses during the applied electric field may be due to the relative long arrangement of PVDF units along the direction of electric field poling and thus increases the values of Lp* and lc. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40941.  相似文献   

8.
Lithium ion conducting solid polymer electrolyte (SPE) films consisted of poly(methyl methacrylate) (PMMA) matrix with lithium perchlorate as a dopant ionic salt, poly(ethylene glycol) as plasticizer and montmorillonite clay as inorganic nanofiller have been prepared by classical solution casting and high intensity ultrasonic assisted solution casting methods. The X‐ray diffraction study confirmed the amorphous structure of all these PMMA‐based solid electrolytes and the clay nanosheets existed in exfoliated form in their amorphous phase. Dielectric relaxation spectroscopy had been employed for the investigation of complex dielectric function, ac electrical conductivity, electric modulus, and impedance spectra of these electrolytes over the frequency range from 20 Hz to 1 MHz. It was observed that the dielectric properties and ionic conductivity of the electrolytes strongly depended on the sample preparation methods, and also had changes with addition of the clay nanofiller. Temperature‐dependent dielectric study of the electrolyte films confirmed that their dc ionic conductivity and conductivity relaxation time values obeyed the Arrhenius behavior. This study also revealed that the lithium ion transportation in the ion–dipolar complexes of these electrolytes occurred through hopping mechanism and it was correlated with the conductivity relaxation time. Preparation of these electrolyte films through ultrasonic assisted solution casting method increased the ionic conductivity by more than one order of magnitude in comparison to that of the classical solution casting method, which revealed that the former was a novel method for the preparation of these SPEs of relatively enhanced ionic conductivity. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42188.  相似文献   

9.
Microsized aluminum/epoxy resin composites were prepared, and the thermal and dielectric properties of the composites were investigated in terms of composition, aluminum particle sizes, frequency, and temperature. The results showed that the introduction of aluminum particles to the composites hardly influenced the thermal stability behavior, and decreased Tg of the epoxy resin; moreover, the size, concentration, and surface modification of aluminum particles had an effect on their thermal conductivity and dielectric properties. The dielectric permittivity increased smoothly with a rise of aluminum particle content, as well as with a decrease in frequency at high loading with aluminum particles. While the dissipation factor value increased slightly with an increase in frequency, it still remained at a low level. The dielectric permittivity and loss increased with temperature, owing to the segmental mobility of the polymer molecules. We found that the aluminum/epoxy composite containing 48 vol % aluminum‐particle content possessed a high thermal conductivity and a high dielectric permittivity, but a low loss factor, a low electric conductivity, and a higher breakdown voltage. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Poly(vinylidene fluoride) (PVDF)/montmorillonite (MMT) composite with different MMT contents were prepared by solutions‐casting method. The effects of MMT on crystalline structure, morphology, dielectric property, piezoelectric property and phase transformation mechanism were studied. The results showed that acted as effective nucleation agents, the orientation of MMT were almost parallel to the surface of the film. The beta phase in the PVDF matrix was increased and the alpha phase was decreased. Relative dielectric constant and loss of the composite were increased with the increasing of MMT. The d33 was also increased with MMT, which reached a maximum (5.8pC/N) with 2.0 wt % MMT. The mechanisms of changes in phase transformation and piezoelectric property were proposed based on experiment results. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
In this work, hybrids of surface modified zinc oxide spherical (ZnOs) nanoparticles and tetrapod‐shaped whiskers (ZnOw) were incorporated into the silicon rubber (SR) to prepare the ZnOs/ZnOw/SR nanocomposites. The incorporation of the ZnOs/ZnOw facilitated the formation of three‐dimensional thermally conducting network. It was found that the thermal conductivity of the ZnOs/ZnOw/SR reached up to 1.309 W m?1 K?1 when the ZnOs/ZnOw content was 20 vol % (Vm‐ZnOs:VZnOw = 7:3), which was nearly 6.5 times that of the pristine SR. The dielectric and resistivity measurements showed that the incorporation of the ZnOs/ZnOw hybrids did not cause much change in the electrical properties. In addition, the results show that the tensile strength of ZnOs/ZnOw/SR nanocomposites is higher than that of pristine SR. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46454.  相似文献   

12.
This article focuses on the reinforcement of hydrogenated acrylonitrile butadiene rubber (HNBR) by cotton fiber as natural reinforcing filler. The effect of fiber alignment on the properties of HNBR compounds and vulcanizates is investigated. Properties of interest include rheological behavior, cure, tensile, abrasion, and dynamic mechanical properties which are correlated to the magnitudes of state‐of‐mix, bound rubber content, crosslink density and fiber alignment. Results obtained reveal that mechanical properties of rubber composites are improved dramatically by the addition of cotton fiber due to the enhanced hydrodynamic effect in association with crosslink density. Furthermore, the degree of fiber alignment is found to depend strongly on shear strain. The results demonstrate the importance of fiber alignment controlled efficiently by shear strain. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41090.  相似文献   

13.
A longstanding challenge in fabricating high-dielectric polymer composite is how to rationalize structure design to improve dielectric constant while minimizing dielectric loss. In this work, we provide a critical material design concept for high-performance flexible dielectric nanocomposite (PCGA) based on backfilling polydimethylsiloxane (PDMS) matrix into the pre-constructed chitosan-reduced graphene oxide (rGO) aerogel with 3D conductive network. Herein, the 3D conductive network enables PCGA to achieve the percolation threshold with a small amount of rGO, which improving the dielectric constant. Simultaneously, the chitosan insulating barrier layer prevents the generation of leakage current between conductive fillers interfaces, which suppressing the losses of the PCGA, thus ensuring the balance between dielectric constant and loss. The results demonstrated that the PCGA (0.06 g rGO) exhibited a dielectric constant as high as 297.3 and a loss tangent as low as 1.91. Subsequently, the as-obtained PCGA composites as a dielectric interlayer was employed for preparing capacitive sensor. The results demonstrated that the sensor possesses a desirable integration of high sensitivity (5.8% kPa−1 in the pressure range 0–7 kPa) and wide work range (0–140 kPa) due to the synergistic effect of the excellent mechanical performance along with high-dielectric constant and suppressed loss.  相似文献   

14.
In this work, we have incorporated pristine graphene and graphene sheets decorated with α and δ forms of manganese dioxide in a hydrogenated nitrile butadiene rubber matrix to obtain high-performance composites. The dual mixing technique was adopted to fabricate the composites having enhanced tensile, dielectric, and electromagnetic interference (EMI) shielding properties. The pristine graphene was introduced at various loadings, however, the α and δ manganese dioxide doped graphene was integrated at a single 8 phr concentration onto the rubber matrix. At an optimized concentration of 8 phr graphene in the matrix, a 101% increase in the tensile strength was observed compared to the unfilled rubber. An excellent improvement in the dielectric properties and a high EMI shielding value of 24.5 dB was observed for the15 phr loaded composite having a thickness of 2 mm. The composites should principally find applications as a robust and lightweight EMI shielding material.  相似文献   

15.
Flexible dielectric materials with high electric energy density and high-temperature resistant characteristic are of great importance for modern electronics and electrical systems. Herein, two-dimensional molybdenum disulfide (MoS2) nanosheets were efficiently produced via liquid-phase exfoliation and then incorporated into polyimide (PI) to prepare MoS2/PI dielectric nanocomposites. Compared to the pristine PI, MoS2/PI nanocomposite films exhibited much larger dielectric permittivity while their dielectric losses still maintained relatively low levels. On the other hand, the Weibull breakdown strength of these nanocomposite films initially increased and then decreased with the increase in the MoS2 content and gave rise to a maximum value of 395 MV m−1 at 1 vol % loading. Combination of the improved dielectric permittivity and breakdown strength makes the MoS2/PI nanocomposite film with 1 vol % MoS2 possess an elevated energy density of about 3.35 J cm−3. Moreover, good tensile and thermal properties of the nanocomposite films hold great promise for their applications in high-temperature and harsh conditions. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47991.  相似文献   

16.
In this study, epoxy/slag composites (ESCs) were prepared by using diglycidyl ether of bisphenol‐A epoxy resin, water‐quenched granulated blast furnace slag as filler, phenolic aldehyde amine as hardener, and titanate as coupling agent. The properties of ESC, including chemical structure, thermal stability, wetting properties, and morphological structure, were investigated by using Fourier transform infrared spectroscopy, thermogravimetric analysis, a contact angle meter, scanning electron microscopy, and energy dispersive spectrometry. The results show that ESCs possess excellent thermal stability, hydrophilicity, and good compatibility with cement slurry compared to pure epoxy. In addition, the applications of ESC in a cement slurry were also investigated. It was found that the fluidity, free water, fluid loss, and content of Ca(OH)2 decreased, while the compressive strength increased with the incorporation of slag into the epoxy matrix. These features were attributed to the pozzolanic reaction of slag by consumption of Ca(OH)2 to form calcium silicate hydrate (C‐S‐H) gel which contributed more to the compressive strength of set cement. Finally, lightweight cement containing ESCs exhibited high strength without affecting the density of the light cement slurry under curing pressure and at high mixing rate compared with lightweight cement made of floating beads. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43359.  相似文献   

17.
We present the different elaboration steps of a composite formed of carbon nanotubes (CNT) carpet embedded in an epoxy polymer. Detailed characterization at each step of the elaboration process is performed. The good alignment of CNT in as‐grown carpets is kept all along the elaboration process of the composite, as it is measured at both macro and microscopic scales by X‐ray scattering. We also ensured by X‐ray fluorescence measurements that the iron‐based catalyst particles used for the synthesis were removed from the carpet after a high temperature post‐annealing treatment. These measurements give valuable information for further applications involving unidirectional nanotube composites and membranes, where CNT alignment is a key parameter. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39730.  相似文献   

18.
The preparation of microfibrillar composites (MFCs) based on oriented blends of polyamide 6 (PA6) and high‐density polyethylene (HDPE) is described. By means of conventional processing techniques, the PA6 phase was transformed in situ into fibrils with diameters in the upper nanometer range embedded in an isotropic HDPE matrix. Three different composite materials were prepared through the variation of the HDPE/PA6 ratio with and without a compatibilizer: MFCs reinforced by long PA6 fibrils arranged as a unidirectional ply; MFCs containing middle‐length, randomly distributed reinforcing PA6 bristles; and a nonoriented PA6‐reinforced material in which the PA6 phase was globular. The evolution of the morphology in the reinforcing phase (e.g., its visible diameter, length, and aspect ratio) was followed during the various processing stages as a function of the blend composition by means of scanning electron microscopy. Synchrotron X‐ray scattering was used to characterize selected unidirectional ply composites. The presence of transcrystalline HDPE was demonstrated in the shell of the reinforcing PA6 fibrils of the final MFCs. The impact of the compatibilizer content on the average diameter and length of the fibrils was assessed. The influence of the reinforcing phase on the tensile strength and Young's modulus of the various composites was also evaluated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
In this investigation, in situ synthesis of zinc oxide nanoparticles in the presence of multiwalled carbon nanotubes (CNTs) have been carried out using a sonochemical technique. Zinc(II)acetate was used as a source of ZnO in the presence of ethylene glycol (EG) to obtain zinc oxide (ZnO) nanoparticles. The synthesized hybrid ZnO/CNTs nanoparticles were used as reinforcements to enhance the mechanical, thermal and UV absorbing properties of Nylon‐6 composite fibers. The polymer nanocomposites (PNC) were fabricated by dry mixing Nylon‐6 polymer powder with the ZnO/CNTs hybrid nanoparticles as the first step, then followed by the drying and melt extrusion process of fiber materials in a single‐screw extruder. The extruded fibers were stretched and stabilized using a godet set‐up and wound on a Wayne filament winder machine. The hybrid ZnO/CNTs infused Nylon‐6 composite fibers were compared with commercial ZnO, CNTs infused Nylon‐6 composite fibers and neat Nylon‐6 fibers for their structural and thermal properties. The morphological characteristics of ZnO/CNTs nanoparticles were carried out using X‐ray diffraction and transmission electron microscopy (TEM) techniques. The Nylon‐6 PNC fibers which were of ~80 μ size were tested mechanically. The tensile tests revealed that failure stress of the 1% infused ZnO/CNTs Nylon‐6 PNC fibers is about 73% higher than the neat extruded Nylon‐6 fiber and the improvement in the tensile modulus is 377.4%. The DSC results show an increase in the glass transition temperature and crystallization for ZnO/CNTs infused Nylon‐6 PNC fibers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
A novel mixer‐vane mixer which is based on elongation flow was used to prepare high‐density polyethylene (HDPE)/montmorillonite (MMT) nanocomposites without any additives. The effect of elongation flow on MMT intercalating in HDPE matrix was studied in terms of rotor speed and mixing time. X‐ray diffraction and transmission electron microscope analyses showed that exfoliated and intercalated nanostructures were obtained when the rotor speed was 40 and 50 rpm, and mixing time was 6 minutes. For all samples prepared by vane mixer, MMT layers showed fine intercalation in the nanocomposites. Differential scanning calorimetry and thermogravimetric analysis were used to study the thermal properties of the nanocomposites. The results showed that the addition of MMT can improve the crystallization of the HDPE. Tensile test revealed the relationships between the mechanical properties and process parameters. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42600.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号