首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
In this work, electrochemical corrosion behavior of a welded X100 pipeline steel was studied in a near-neutral pH solution by electrochemical scanning vibrating electrode technique combined with metallographic and scanning electron microscopy/energy dispersive x-ray analysis. Results demonstrated that a softening phenomenon occurs around the weld, and there is the high micro-hardness in base steel adjacent to weld. In particular, there is the highest micro-hardness in base steel containing acicular ferrite and bainite. Therefore, welding and the associated post-treatment on X100 steel alter dramatically the microstructure and mechanical property around weld, resulting in an enhanced micro-hardness in base steel. There are high and low local dissolution current densities at base steel and the welded zones, respectively. The difference between the maximum and minimum dissolution current densities decreases with time, and the distribution of dissolution current density tends to be uniform. Hydrogen-charging changes the local dissolution activity of the welded steel. Different from the hydrogen-free steel, there is the highest dissolution current density at heat-affected zone. It is reasonable to assume that the charged hydrogen would accumulate at heat-affected zone, and the synergism of hydrogen and local stress results in a high anodic dissolution rate.  相似文献   

2.
In this work, scanning vibrating electrode technique and local electrochemical impedance spectroscopy measurements were used to investigate the effects of stress and hydrogen on electrochemical corrosion behavior of a X100 pipeline steel in a near-neutral pH solution. The stress distribution on the test specimen was calculated using the finite element method. Results demonstrated that the hydrogen-charging enhances the local anodic dissolution of the steel, contributing to the formation of a layer of corrosion product. However, there is little difference of the charge-transfer resistance between the regions with and without hydrogen-charging due to rapid diffusion of hydrogen atoms throughout the specimen with time. When the local stress concentration is not significant enough to approach the yielding strength of the steel, the steel is still in a relatively stable state, and there is a uniform distribution of dissolution rate over the whole surface of the steel specimen. Although the stress-enhanced activation is not sufficient to result in an apparent difference of current density of the steel, the activation of the steel would activate dislocations, which serve as effective traps to the charged hydrogen atoms. With the increase of hydrogen concentration, the hydrogen-enhanced anodic dissolution becomes dominant.  相似文献   

3.
4.
The electrochemical corrosion and stress corrosion cracking (SCC) behaviors of X70 pipeline steel in CO2-containing solution were studied by electrochemical measurements, slow strain rate tensile tests, and surface characterization. The results found that the electrochemical corrosion of X70 steel in aerated, alkaline solution is an activation-controlled process, and a stable passivity cannot develop on steel. Corrosion rate of the steel increases with the CO2 partial pressure. The enhanced anodic dissolution due to the additional cathodic reaction in the presence of CO2, rather than the film-formation reaction, dominates the corrosion process. The mass-transfer step through FeCO3 deposit is the rate-controlling step in corrosion of the steel. The susceptibility of steel to SCC and the fracture brittleness increase with the CO2 partial pressure. The enhanced fracture brittleness is attributed to the evolution and penetration of hydrogen atoms into the steel, contributing to crack propagation. The formed deposit layer is not effective in reducing hydrogen permeation due to the loose, porous structure.  相似文献   

5.
In this study, electrochemical impedance spectroscopy (EIS) simultaneously with the slow strain rate testing were used to investigate the stress corrosion cracking (SCC) behavior of X70 pipeline steel in high pH bicarbonate solution at different applied potentials. Potentiostatic EIS tests were also conducted at certain times to determine the changes associated with the SCC. Circuit models for the cracking were proposed by the use of the potentiostatic EIS measurements at different applied potentials. Finally, the results of the potentiostatic EIS tests and the SSR tests showed the decline of the circuit element resistance by increasing the stress which was related to the cracking. It was also observed that the X70 pipeline steel was most susceptible to SCC at potential of ?650 mV versus SCE.  相似文献   

6.
This paper investigates the stress corrosion cracking (SCC) behavior of welded API X70 pipeline steel in simulated underground water using the slow strain rate test, fractographic characterization by scanning electron microscopy, and potentiodynamic polarization techniques. SCC susceptibility of the heat-affected zone (HAZ) is demonstrated to be dependent on two factors: the effect of the microstructure in the HAZ on electrochemical reactions and the effect of the mechanical property on SCC occurrence. Electrochemical experiments indicate that the microstructures in the HAZ, especially the softened microstructure, can significantly facilitate the processes of hydrogen evolution when cathodic potential is positive to ?1050 mVSCE. However, when the cathodic potential is below ?1050 mVSCE, the cathode current densities of different microstructures are close to one another and greatly increase because of the decrease of the applied potentials. The SCC behavior is consistent with the electrochemical results. Under ?650 and ?850 mVSCE, SCC is most likely to occur in the softened region, and under ?1200 mVSCE, SCC occurs in both the softened and hardened regions.  相似文献   

7.
采用慢应变速率拉伸试验(SSRT)及断口观测研究了不同显微组织X70钢的应力腐蚀破裂(SCC)敏感性.结果表明:X70钢及其不同热处理后的劣化组织在鹰潭土壤模拟溶液中均具有明显的SCC敏感性;三种组织X70钢的SCC敏感性整体上表现为随外加电位的降低而增大,组织硬化和晶粒过大都能增加材料的SCC敏感性.  相似文献   

8.
The stress corrosion cracking (SCC) behaviors and mechanisms of X80 pipeline steels with different strength and microstructure in high pH carbonate/bicarbonate solution were investigated by slow strain rate testing and electrochemical test. The results showed that the cracking mode of low strength X80 steel composed of bulky polygonal ferrite and granular bainite in high pH solution was intergranular (IGSCC), and the SCC mechanism was anodic dissolution (AD). While the mixed cracking mode of high strength X80 steel consisted of fine acicular ferrite and granular bainite was intergranular (IGSCC) in the early stage, and transgranular (TGSCC) in the later stage. The decrease of pH value of crack tip was probably the key reason for the occurrence of TGSCC. The SCC mechanism may be a mixed mode of AD and hydrogen embrittlement (HE), and the HE mechanism may play a significant role in the deep crack propagation at the later stage. The cracking modes and SCC mechanisms of the two X80 steels were associated with its microstructure and strength.  相似文献   

9.
The current work analyzes the effect of the dynamic change in strain rate during tensile loading of a mild steel on its mechanical and stress corrosion behavior in 3.5 wt.% NaCl solution. The sample experiences high strain rate (10?2 s?1) up to 10, 15 and 20% of total deformation and then very low strain rate of 10?6 s?1 till fracture without any unloading in between. The behavioral characteristics of the steel under these circumstances are found to be different from that exhibited during complete loading till fracture both at high and slow strain rates separately. Total strain increases with the increase in the strain at which change in strain rate happens, and this is attributed to the generation of large number of dislocations at higher strain rate and subsequently release of dislocation at low strain rate during change over due to more time available for dynamic recovery. This observation is common for both in air and corrosive environment. One unique observation in this study is the higher total strain and lower strength observed during dynamic change in strain rate in the corrosive environment compared to that in air, which is attributed to the hydrogen-induced plasticity mechanism.  相似文献   

10.
采用动电位极化技术、慢应变速率拉伸(SSRT)试验和SEM形貌分析等方法,研究了外加电位对X80钢在南雄土壤模拟溶液中的应力腐蚀破裂(SCC)行为的影响。结果表明,在不同外加电位下,X80钢在土壤模拟溶液中呈现出不同的SCC敏感性。在-550mV(SCE,下同)阳极电位下,X80钢的阳极溶解抑制了其SCC的发生;在自腐蚀电位Ecorr(约-720mV)下,X80钢SCC行为呈现出受阳极溶解和氢脆混合控制的机制;在-850mV阴极电位下,阴极保护抑制了X80钢SCC的发生;而在-1 000mV和-1 150mV阴极电位下,氢脆在X80钢SCC过程中占重要作用。  相似文献   

11.
X70管线钢点蚀行为研究   总被引:1,自引:0,他引:1  
对X70管线钢的凹坑进行了SEM观察,并对控轧控冷工艺以及层流冷却水进行了分析研究。实验结果表明,X70管线钢凹坑是由于点蚀腐蚀所引起,而点蚀产生的原因是由于层流冷却水中的氯离子浓度偏高。另外,对X70管线钢的点蚀形成机理进行了讨论。  相似文献   

12.
Protection of Metals and Physical Chemistry of Surfaces - Alternating current accelerates stress corrosion cracking of grade X70 pipe steel in electrolytes of various compositions: 3.5% NaCl...  相似文献   

13.
用慢应变速率拉伸试验方法研究了08PVRe钢在10%NH3NO3溶液中几种外加极化电位下的应力腐蚀开裂敏感性,结果表明:0.8PVRe钢在10%NH4NO3溶液中,在一定的电位范围内会发生沿晶应力腐蚀开裂,在+134mV和+145mV下的敏感性最强。用断裂力学,电化学以及金属物理的基本知识对材料发和沿晶应力腐蚀开裂的机理进行了分析讨论。  相似文献   

14.
Stress corrosion cracking behaviors of AISI 316L austenitic stainless steel at slow strain rates in two environments of air and MgCl2 at ambient temperature and 154 °C were investigated. The results revealed that a decrease in strain rate, during testing in boiling MgCl2 environment, led to a rigorous deterioration of the mechanical properties of the material, causing brittleness of the steel. The results obtained from fractography indicated that the samples tested in air had typical ductile fracture surface appearances, while the fracture surfaces of the samples tested in a corrosive environment showed a combination of intergranular and transgranular fracture modes, having a brittle macroscopic appearance. The transgranular mode became predominant as strain rate decreased. The results suggested that the presence of deformation bands in front of crack tips were responsible for transgranular cracking caused by stress corrosion.  相似文献   

15.
采用动电位扫描方法和慢应变速率拉伸试验(SSRT)研究了X80管线钢在库尔勒土壤模拟溶液中的应力腐蚀行为,并用扫描电镜观察分析了不同外加电位下的断口形貌。结果表明,X80管线钢在库尔勒土壤模拟溶液中的极化曲线具有典型的活性溶解特征。随外加电位的负移,X80管线钢的应力腐蚀敏感性明显增加。阴极极化条件下,X80管线钢在库尔勒土壤模拟溶液中的SCC的开裂机制为氢致破裂(HIC)。  相似文献   

16.
采用慢拉伸(SSRT)、动电位极化和SEM观察等方法,研究了在不同的阴极保护电位条件下X100钢在酸性土壤模拟溶液中的应力腐蚀行为.结果表明,X100钢发生穿晶裂纹的应力腐蚀,裂纹的萌生和发展与阴极保护电位有关.完全阳极过程控制时,X100钢无裂纹出现,但出现晶间腐蚀;在混合过程控制时,应力腐蚀敏感性较低,裂纹发展缓慢;在完全阴极过程控制时,氢脆机制起主要作用,裂纹扩展迅速.  相似文献   

17.
This paper investigates the effect of plastic deformation on the anodic dissolution behavior of pipeline steel in deaerated groundwater with near-neutral pH. The plastic deformation is introduced via two different ways: cold-rolling and in situ tension. It is observed that the cold-rolling prior to the exposure to corroding environment reduces the corrosion rate but the in situ tension increases corrosion rate slightly. In accord with thermodynamic analysis, the impacts of residual stresses and plastic deformation on active dissolution are very small except a highly non-uniform dislocation structure is formed. A preliminary analysis suggests that the reduced corrosion rate of cold-rolled steel is related to competitive adsorption of CO2 and H+ on the active sites over the surface.  相似文献   

18.
19.
pH值对X80管线钢土壤腐蚀行为的影响   总被引:3,自引:0,他引:3  
利用电化学阻抗谱(EIS)技术及Mott-Schottky测试方法研究了pH值对X80管线钢土壤腐蚀行为的影响.结果表明:X80管线钢在土壤环境中会形成一层保护性好的钝化膜,其中,钝化膜的膜电阻、离子的传递电阻及扩散电阻随着介质pH值的增加而增大,表明钝化膜对基体的保护作用随介质pH值的增加而增强.Mott-Schottky分析表明,钝化膜呈现n型半导体特性,随着介质pH值的增加膜内的施主密度增加,平带电位与介质pH值具有良好的线性关系,其拟和斜率约为74.14mV/pH.  相似文献   

20.
王梅  张义 《铸造技术》2014,(12):2818-2820
研究了碱性环境下应变速率对建筑用管线钢腐蚀行为的影响。结果表明,该钢的断裂强度随着应变速率的增加,呈现先升高后降低的趋势。断面收缩率越大,SCC(应力腐蚀裂纹)敏感性越差。在库尔勒模拟溶液中,钢SCC敏感性极强的应变速率范围是5.0×10-75.0×10-6s-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号