首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
用直流电弧等离子体法制备金属钼纳米粉体再使其与赤磷发生固相反应,用两步法制备出磷化钼纳米粒子。使用X射线衍射(XRD)和透射电镜(TEM)等手段表征磷化钼纳米粒子的结构并进行了电化学性能测试。结果表明,MoP纳米粒子呈球状,粒径为20~50 nm;在电流密度为100 mA/g的条件下MoP纳米粒子负极材料的首次放电比容量达到746 mAh/g,50次循环后放电比容量为241.9 mAh/g;电流密度为2000 mA/g时放电比容量为99.90 mAh/g,电流密度恢复到100 mA/g其放电比容量仍然保持247.60 mAh/g。用作锂离子电池的负极材料,MoP纳米粒子具有优异的稳定性和可逆性。  相似文献   

2.
孙杰  赵东林  刘辉  景磊  迟伟东  沈曾民 《功能材料》2012,43(15):2027-2030
以二茂铁为铁源,石油渣油为碳源,通过加压热解和空气氧化制备了碳包覆空心Fe3O4纳米粒子。采用X射线衍射(XRD)、透射电镜(TEM)以及高倍透射电镜(HRTEM)等测试方法对样品的形貌和结构进行表征。采用恒流充放电和交流阻抗方法测试碳包覆空心Fe3O4纳米粒子作为锂离子电池负极材料的电化学性能。在电流密度为0.2mA/cm2时,首次放电比容量高达1294.7mAh/g,30次循环之后其放电比容量为392.1mAh/g;电流密度为1mA/cm2时,首次放电比容量为216.3mAh/g,30次循环之后其放电比容量为113mAh/g。  相似文献   

3.
采用直流电弧放电法制备出一种三维石墨烯纳米球材料。采用扫描电镜(SEM)、透射电镜(TEM)、拉曼光谱和X射线衍射光谱(XRD)等测试方法对三维石墨烯纳米球的形貌和结构进行了表征和研究。通过交流阻抗(EIS)、恒流充放电和循环稳定性测试等电化学测试手段来研究三维石墨烯纳米球作为锂离子电池负极材料的电化学性能。结果表明, 在电流密度为0.05 A/g下, 三维石墨烯纳米球作为锂离子电池负极材料的首次放电容量为485.9 mAh/g, 高于炭黑作负极的放电容量(401 mAh/g); 当电流密度为1 A/g时, 三维石墨烯纳米球负极材料仍然具有185.4 mAh/g的放电容量。在电流密度分别为0.5 A/g和2.5 A/g下, 充放电循环100次以后, 三维石墨烯纳米球的比容量几乎没有衰减, 这表明三维石墨烯纳米球作为锂离子电池的负极材料比炭黑具有更大的容量, 同时具有优异的循环稳定性。  相似文献   

4.
以聚丙烯腈基活性碳纤维(PAN-ACF)和SnCl2为原料, 采用溶胶-凝胶法制备PAN-ACF/SnO2复合材料并将其用作锂离子电池负极材料。采用X射线衍射仪(XRD)分析材料的组成及晶体结构; 用扫描电镜(SEM)观察样品形貌; 用热失重分析(TGA)对复合材料中SnO2的含量进行测定; 用恒流充放电、交流阻抗(EIS)和循环伏安(CV)对复合材料作为锂离子电池负极材料的电化学性能进行表征。结果表明, SnO2的含量对产物的形貌、结构和电化学性能有重要的影响。所制得的PAN-ACF/SnO2复合材料中SnO2 的晶格常数a=0.4739 nm和c=0.3181 nm, 为四方金红石结构。PAN-ACF表面在多次充放电过程中未发生明显变化。该复合材料用作锂离子电池负极材料时, 在电流密度为50 mA/g的条件下, SnO2含量为41.9%的复合材料首次放电高达1824 mAh/g, 20次后容量仍保持在450 mAh/g左右并趋于稳定, 呈现出良好的循环性能。  相似文献   

5.
VB2因具有超高理论比容量(4060 mAh/g)而成为具有发展潜力的空气电池负极材料。实验以VB2为负极活性物质, Ni为导电剂, NH4HCO3为造孔剂, 采用粉末冶金方法制备了大容量VB2-空气电池用多孔负极片, 并探讨了负极片孔隙度对负极所组装空气电池放电性能的影响规律。结果表明, 所制备的多孔VB2负极片放电性能优异, 放电比容量可以达到3216~3463 mAh/g范围内; 多孔VB2负极片放电容量、比容量、库伦效率和比能量均与孔隙度密切相关。当添加15wt%NH4HCO3造孔剂时, 烧结制备的多孔VB2负极片的孔隙度为60.91%, 此时VB2-空气电池放电性能最优: 放电容量为7792 mAh, 放电比容量为3463 mAh/g, 库伦效率为85.30%, 放电比能量为2370 mWh/g。  相似文献   

6.
水热合成法制备纳米SnO2-Fe2O3复合材料,以SnO2-Fe2O3为活性物质,多壁碳纳米管(MWCNTs)导电纸代替传统铜箔作为负极集流体制作锂离子电池。采用XRD、SEM进行表征,结果显示,SnO2-Fe2O3均匀嵌入到MWCNTs构建的三维导电网络的空隙中。电化学测试结果表明,SnO2-Fe2O3/MWCNTs导电纸作为负极电极能够显著提高锂离子电池的循坏和倍率性能。在100 mA/g电流密度下循环30次,SnO2-Fe2O3/MWCNTs导电纸电池比容量达到1 088 mAh/g,而在200 mA/g电流密度下循环200次后,SnO2-Fe2O3/MWCNTs导电纸比容量能稳定保持在898 mAh/g,表现出良好的循环性能,逐渐增大充放电电流,电池的比容量有所下降但其库伦效率仍然保持在96%以上,而在高倍率(1 600 mA/g)下进行充放电时,SnO2-Fe2O3/MWCNTs导电纸比容量仍然能够保持在547 mAh/g,之后再将电流密度降到100 mA/g,比容量重新回到1 000 mAh/g,SnO2-Fe2O3/MWCNTs导电纸表现出十分优异的电化学性能。   相似文献   

7.
带直流电弧等离子体气相蒸发法制备球状Al纳米粒子,并对其进行了XRD、TEM以及电极的脱/嵌锂离子循环性能表征。结果表明,制备出的Al粒子大小约为100 nm,表面包覆一层厚度不到1nm的非晶氧化物。使用Al纳米粒子制做的负极极片组装电池,研究了电流密度对其电化学特性的影响。结果表明,电池的首次充放电曲线和前10次循环性能曲线表明,电流密度最小的Al电极首次放电容量最大,为951.9 mAh/g.首次容量损失也最大,其循环稳定性能也相应变差:而电流密度最大的Al电极首次放电容量为879.7mAh/g,其循环稳定性能最佳。首次放电结束后,在电极材料中出现了两种化合物AlLi和Al2Li3,与测试出的放电容量相符。  相似文献   

8.
通过两步法制备了TiS_2纳米片多孔负极材料。以钛块为钛源,采用直流电弧等离子体法在H_2与Ar的混合气氛中制备TiH_(1.924)纳米粒子作为前驱体,与升华硫共混加热硫化得到TiS_2纳米片多孔负极材料。对材料进行X射线衍射(XRD)、透射电镜(TEM)、扫描电镜(SEM)、拉曼(Raman)等表征,XRD与Raman结果显示得到晶化完全的TiS_2纳米材料;TEM与SEM结果表明TiS_2微观形貌呈纳米片状,纳米片沿空间任意方向生长形成多孔结构。以TiS_2纳米片多孔结构作为锂离子电池负极材料研究其电化学储锂性能,500 mA/g电流密度下循环时,其首次充放电比容量分别为816.0、1 193.0 mAh/g,50次循环后,容量仍保持550 mAh/g;在5 A/g的高电流密度下仍维持有100 mAh/g的容量,表现出优异的循环稳定性和充放电可逆性。  相似文献   

9.
采用3,4,9,10-二萘嵌苯四酸二酐(PTCTA)为原料,经高温自由基聚合、气相沉积、脱氢、石墨化工艺制得锂离子电池用聚萘(PPN)负极材料。通过X射线衍射、扫描电子显微镜、激光显微拉曼光谱等检测技术对PPN负极材料的结构和表面形貌进行了分析与表征,研究了PPN作为锂离子电池负极材料的电化学行为。结果表明,PPN负极材料具有类似石墨的多片层结构,电化学测试表明,PPN负极材料具有良好的循环稳定性和倍率性能;在50mA/g电流密度下,PPN负极材料首次放电比容量为368.4mAh/g,经过200圈循环之后,PPN负极材料的放电比容量仍保持在300.3mAh/g。结果显示PPN适用于做锂离子电池负极材料。  相似文献   

10.
制备长循环稳定、高容量的负极材料是锂离子电池实现大规模储能应用的前提之一。利用静电纺丝技术和水热硫化的方法制备了均匀分布的NiS2/碳纳米纤维(NiS2/C)复合材料。作为锂离子电池负极材料,NiS2/C电极的首次放电比容量为864.6 mAh/g,首次库仑效率为62.7%。其中不可逆容量为322.9 mAh/g,不可逆容量主要由转换反应的部分不可逆及固态电解质(SEI)膜的形成造成的。NiS2/C复合电极表现出优异的循环稳定性,200 mA/g下150次循环后容量仍然维持在519 mAh/g,容量保持率高达90.4%。此外,在2 A/g大电流密度下,NiS2/C电极的容量仍高于310 mAh/g表现出出色的倍率性能。借助XRD、SEM及TEM表征,分析发现包裹着NiS2纳米颗粒的碳纤维,作为良好的导电介质,既可以提高NiS2的导电性,也可缓解NiS2脱嵌过程中的体积膨胀,使得NiS2/C电...  相似文献   

11.
以ZnCl2和FeCl3.6H2O为原料, 通过溶剂热法制备了尖晶石型ZnFe2O4材料, 通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅立叶红外光谱(FT-IR)和恒流充放电测试技术对材料的结构、形貌及电化学性能进行了表征。结果表明, 合成的材料为纳微多孔结构, 其颗粒粒径约为250 nm, 以50 mA/g的电流密度充放电时, 可逆比容量为933.1 mAh/g, 经过100次循环后, 比容量为813.5 mAh/g, 比容量保持率高达87.2%, 表现出优异的循环稳定性能。当电流密度增大到400 mA/g时, 其比容量约为355 mAh/g, 表现出较高的倍率性能。采用该法制备得到的纳米ZnFe2O4具有比容量高、循环稳定好等优点, 是一种具有较强应用前景的锂离子电池负极材料。  相似文献   

12.
采用醇热技术可控制备了中空核壳结构α-MoO3-SnO2二次锂离子电池复合负极材料。通过XRD、SEM、TEM、CV和恒流充放电等测试手段对材料结构、形貌和电化学性能进行了表征。结果表明: 构建的多元金属氧化物既具有电化学活性成分, 又含有骨架支撑部分, 独特的中空结构有效地缩短了电子和锂离子传输路径。电化学测试表明: 该材料在电流密度50 mA/g时循环100次后放电比容量仍高达865 mAh/g。在电流密度为1000 mA/g时循环100次后放电比容量仍达到545 mAh/g, 表现出优异的循环性能和倍率性能。该合成方法简单、成本低, 产量高, 可为制备其它中空核壳结构先进功能材料提供借鉴。  相似文献   

13.
Fe2O3具有理论比容量高和价格低廉等特点, 已成为锂离子电池负极材料的研究热点之一。实验以不同质量比PVP/FeCl3溶液为前驱体, 静电纺丝技术制备PVP/FeCl3纳米纤维并热处理, 得到不同直径的Fe2O3纳米纤维负极材料, 并以水热合成法制备了Fe2O3纳米颗粒。利用X射线衍射、热重、红外光谱、扫描电镜、透射电镜和恒流充放电等测试手段对材料的物相、微观形貌和电化学性能进行表征。结果表明, Fe2O3纳米纤维比Fe2O3纳米颗粒表现出更优的电化学性能, 直径为160 nm的Fe2O3纳米纤维负极材料的倍率性能和循环性能最佳, 材料在0.1 A/g电流密度下的可逆容量为827.3 mAh/g;在2 A/g电流密度下70次循环放电比容量有439.1 mAh/g。  相似文献   

14.
随着电子产品、电动汽车以及智能电网的快速发展,不仅需要锂离子电池(LIBs)具有优异的储锂性能,而且要求电极材料成本低廉、资源丰富和绿色环保。基于碳负极材料的优点,将废弃的一次性竹筷,在碱性溶液中经过可控的热处理,利用竹子中丰富的天然纤维素,从而获得尺寸均匀的碳纤维(CFs)材料。相比于石墨电极,竹基CFs作为LIBs的负极材料时表现出优异的电化学性能。为进一步提高其储锂性能,以CFs为骨架,通过水热法在其表面制备了一层二硫化钼(MoS2)纳米花,形成核壳结构的CFs/MoS2复合电极材料。电化学测试结果表明,CFs电极在200 mA/g的电流密度下循环500次,放电比容量仍有381.1 mA·h/g;CFs/MoS2复合材料在1000 mA/g的大电流密度下经过1000次循环,仍保持有843 mA·h/g的放电比容量。   相似文献   

15.
以蔗糖为碳源, 以草酸为抗氧化剂, 采用溶剂热、球磨和固相烧结相结合的方法制备了LiMn0.6Fe0.4PO4/C正极材料, 并通过改变烧结温度得到了不同形貌结构的目标产物。以金属锂片为对电极, 组装成锂离子半电池, 探究其电化学性能。研究结果表明, 当烧结温度为650℃时, 该材料表现出优异的电化学性能, 在0.2C(1C=170 mA/g)的电流密度下, 起始容量为119.1 mAh/g, 循环80次之后, 容量上升到148.8 mAh/g, 并且该材料在大电流密度下也表现出优异的循环稳定性。  相似文献   

16.
崔瑜  王艳芝  陈召凡 《无机材料学报》2015,30(11):1218-1222
以钛酸丁酯为TiO2前驱体, 通过水热法制得TiO2/石墨烯复合物。使用X射线衍射(XRD)、热重分析(TG)、透射电镜(TEM)、扫描电镜(SEM)和电化学充放电等手段对材料进行了表征和分析。结果表明: TiO2颗粒均匀地分散在石墨烯的表面, 复合物中石墨烯的含量为24.67%。当该材料用作锂离子电池负极材料时, 在2C的放电倍率下, 首次放电容量为384.35 mAh/g, 循环100次后的放电容量为130.26 mAh/g, 是纯TiO2电极放电容量的2.93倍。与纯TiO2电极相比, TiO2/石墨烯复合物的电荷转移电阻较低。TiO2/石墨烯复合物具有较好的倍率性能和较高的电化学反应活性。  相似文献   

17.
以氯化亚铁、硫代硫酸钠和氧化石墨烯(GO)为原料, 采用水热法制备FeS2/还原氧化石墨烯(RGO)纳米复合材料, 并采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、激光粒度分布仪和差热分析仪(DTA)等对FeS2/RGO复合材料进行了表征。结果表明, 在水热反应过程中加入GO可以防止FeS2颗粒的团聚, 使FeS2形成疏松的球状颗粒。采用LiCl-KCl电解质, 在450℃以100mA/cm2电流密度放电时, 截止1.5 V时, FeS2/RGO比容量为314.9 mAh/g, 较FeS2高65.6 mAh/g; 采用LiF-LiCl-LiBr电解质, 在500℃以100 mA/cm2电流密度放电, 截止1.5 V时, FeS2/RGO放电比容量为302.3 mAh/g, 较FeS2高29.8 mAh/g。与FeS2相比, 加入石墨烯提高了正极材料的导电性, 单体电池在放电过程中极化电阻相对较小, 使得FeS2/RGO复合材料表现出较高的放电比容量。  相似文献   

18.
以2-乙基己酸亚锡为原料, 通过静电纺丝以及随后在惰性气氛中煅烧成功制备出电化学性能优良的SnO2-C复合纤维。X射线衍射(XRD)、拉曼光谱(Raman)、X射线光电子能谱(XPS)、热重分析(TGA)、扫描电镜(SEM)和透射电镜(TEM)的分析结果表明: SnO2-C复合纤维具有无定形结构, 直径为100~300 nm, 含碳量约38%。电化学测试结果表明: 在50 mA/g的电流密度下, 无定形SnO2-C复合纤维的首次放电比容量、充电比容量和库仑效率分别为1370.1 mAh/g、757.5 mAh/g和55.28%; 在50 mA/g的电流密度下循环80次后, SnO2-C复合纤维的比容量为611.6 mAh/g, 没有出现明显的容量衰减。SnO2-C复合纤维高的比容量和良好的循环性能归因于其SnO2均匀分布的SnO2-C复合一维结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号