首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers semi‐global robust output regulation problem for a class of singular nonlinear systems whose algebraic equations are not precisely known. Since the algebraic equations are not known, the output regulation problem of singular nonlinear systems cannot be solved by directly reducing the singular nonlinear system into a normal nonlinear system. Based on internal model principle, we convert the robust output regulation problem of singular nonlinear systems into a robust stabilization problem of an augmented singular nonlinear system. The augmented singular nonlinear system is also with unknown algebraic equations. However, without transforming the singular nonlinear system into a normal nonlinear system, it is shown that the augmented singular nonlinear system can be semi‐globally stabilized by a high gain output feedback control law under some reasonable assumptions. Moreover, the semi‐global stabilization control law of the augmented singular nonlinear systems also solves the semi‐global robust output regulation problem of the original singular nonlinear system.  相似文献   

2.
In this paper, we study the event‐triggered global robust practical output regulation problem for a class of nonlinear systems in output feedback form with any relative degree. Our approach consists of the following three steps. First, we design an internal model and an observer to form the so‐called extended augmented system. Second, we convert the original problem into the event‐triggered global robust practical stabilization problem of the extended augmented system. Third, we design an output‐based event‐triggered control law and a Zeno‐free output‐based event‐triggered mechanism to solve the stabilization problem, which, in turn, leads to the solvability of the original problem. Finally, we apply our result to the controlled hyperchaotic Lorenz systems.  相似文献   

3.
In this paper, we study the cooperative semi-global robust output regulation problem for a class of minimum phase nonlinear uncertain multi-agent systems. This problem is a generalization of the leader-following tracking problem in the sense that it further addresses such issues as disturbance rejection, robustness with respect to parameter uncertainties. To solve this problem, we first introduce a type of distributed internal model that converts the cooperative semi-global robust output regulation problem into a cooperative semi-global robust stabilization problem of the so-called augmented system. We then solve the semi-global stabilization problem via distributed dynamic output control law by utilizing and combining a block semi-global backstepping technique, a simultaneous high gain feedback control technique, and a distributed high gain observer technique.  相似文献   

4.
In this paper, we study the cooperative global output regulation problem for a class of heterogeneous second order nonlinear uncertain multi-agent systems. We first introduce a type of distributed internal model that converts the cooperative global output regulation problem into the global robust stabilization problem of the so-called augmented multi-agent system. Then we further globally stabilize this augmented multi-agent system via a distributed state feedback control law, thus leading to the solution of the original problem. A special case of our result leads to the solution of the global leader-following consensus problem for the second order nonlinear multi-agent systems without satisfying the global Lipschitz condition.  相似文献   

5.
The global robust output regulation problem for nonlinear plants subject to nonlinear exosystems has been a challenging problem and has not been well addressed. The main difficulty lies in finding a suitable internal model. The existing internal model for handling the nonlinear exosystem is not zero input globally asymptotically stable, and can only guarantee a local solution for the output regulation problem. In this paper, we first propose a new class of internal models, which is guaranteed to exist under the generalized immersion condition. An advantage of this internal model is that it is zero input globally asymptotically stable. This fact will greatly facilitate the global stabilization of the augmented system associated with the given plant and the internal model. Then we will further utilize this class of internal models to solve the global robust output regulation problem for output feedback systems with a nonlinear exosystem. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
研究一类包含未知非线性项的非线性系统的鲁棒输出调节问题.此类非线性系统由一包含未知参数的线性中性稳定的外系统驱动.首先运用调节器方程组解和标准内模将输出调节问题转化为镇定问题;然后给出控制律镇定闭环系统,同时利用镇定输入项和外系统信息设计出自适应内模方程.控制律使得闭环系统的信号全局最终有界,且误差被调节至预先设定的任意小的精度值.仿真结果验证了所提出设计方法的有效性.  相似文献   

7.
The surface‐mounted permanent‐magnet synchronous motor is a two‐input, two‐output nonlinear system. The multi‐input, multi‐output nature of the system has posed some specific challenges to various control methods. Recently, the robust output regulation problem of the system subject to a known neutrally stable exosystem was studied. The problem came down to a global robust stabilization problem of an augmented system composed of the original plant and an internal model. In this paper, we will further study the robust output regulation problem of the system subject to an unknown neutrally stable exosystem. Like in the case where the exosystem is known, the current problem can be solved by globally stabilizing an augmented system. But unlike in the case where the exosystem is known, the augmented system takes a much more complicated form because of uncertainty in the exosystem than the case where the exosystem is known. In particular, the dynamic uncertainty in the current augmented system contains linearly parameterized uncertainty, and hence is not input‐to‐state stable. By utilizing some dynamic coordinate transformation technique, and combining some robust control and adaptive control techniques, we will solve the problem via a recursive approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
This article considers the global robust output regulation problem via output feedback for a class of cascaded nonlinear systems with input-to-state stable inverse dynamics. The system uncertainties depend not only on the measured output but also all the unmeasurable states. By introducing an internal model, the output regulation problem is converted into a stabilisation problem for an appropriately augmented system. The designed dynamic controller could achieve the global asymptotic tracking control for a class of time-varying reference signals for the system output while keeping all other closed-loop signals bounded. It is of interest to note that the developed control approach can be applied to the speed tracking control of the fan speed control system. The simulation results demonstrate its effectiveness.  相似文献   

9.
In this paper, we study the cooperative robust output regulation problem for discrete‐time linear multi‐agent systems with both communication and input delays by a distributed internal model approach. We first introduce the distributed internal model for discrete‐time multi‐agent systems with both communication and input delays. Then, we define the so‐called auxiliary system and auxiliary augmented system. Finally, we solve our problem by showing, under some standard assumptions, that if a distributed state feedback control or a distributed output feedback control solves the robust output regulation problem of the auxiliary system, then the same control law solves the cooperative robust output regulation problem of the original multi‐agent systems.  相似文献   

10.
In this paper, we will establish a framework that can convert the robust output regulation problem for discrete‐time nonlinear systems into a robust stabilization problem for an appropriately augmented system consisting of the given plant and a specific dynamic system called internal model. We then apply this framework to solve the local robust output regulation problem for a general class of discrete‐time nonlinear systems. The results of this paper gives a discrete‐time counterpart of the recent results on the continuous‐time robust output regulation problem. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
A general framework for tackling the output regulation problem   总被引:3,自引:0,他引:3  
Output regulation aims to achieve, in addition to closed-loop stability, asymptotic tracking and disturbance rejection for a class of reference inputs and disturbances. Thus, it poses a more challenging problem than stabilization. For over a decade, the nonlinear output regulation problem has been one of the focuses in nonlinear control research, and active research on this problem has generated many fruitful results. Nevertheless, there are two hurdles that impede the further progress of the research on the output regulation problem. The first one is the assumption that the solution or the partial solution of the regulator equations is polynomial. The second one is the lack of a systematic mechanism to handle the global robust output regulation problem. We establish a general framework that systematically converts the robust output regulation problem for a general nonlinear system into a robust stabilization problem for an appropriately augmented system. This general framework, on one hand, relaxes the polynomial assumption, and on the other hand, offers a greater flexibility to incorporate recent new stabilization techniques, thus setting a stage for systematically tackling the robust output regulation with global stability.  相似文献   

12.
The problem of global robust output regulation for a class of switched nonlinear systems with nonlinear exosystems is investigated in this paper where not all subsystems are stabilizable. First, as an extension of the concept of non‐switched internal model, this paper defines a switched internal model, which together with the plant is called the switched augmented system. Also, we show that the problem of output regulation for the switched nonlinear system can be converted into a global robust regulation problem of the switched augmented system. Second, based on the average dwell time method, the global robust regulation problem under a class of switching signals with average dwell time is solved, which leads to the solution of the problem of global robust output regulation. Finally, an example is provided to demonstrate the effectiveness of the proposed design approach.  相似文献   

13.
Most of existing results on robust output regulation problem of singular nonlinear systems are limited to local solutions. In this paper, the semi-global robust output regulation problem for a class of singular nonlinear systems is investigated by using a nonlinear internal model. Attaching a nonlinear internal model to the singular nonlinear system yields an augmented singular nonlinear system whose semi-global robust stabilisation solution leads to the solution of the semi-global robust output regulation problem of the original singular nonlinear system. The solvability conditions of the semi-global output regulation problem are established by addressing the solvability of the robust stabilisation problem of augmented singular nonlinear system. Finally, a numerical simulation example is used to illustrate the design of the semi-global regulator for the singular nonlinear systems.  相似文献   

14.
In this paper, we study the global robust output regulation problem for a class of multivariable nonlinear systems. The problem is first converted into a stabilization problem of an augmented system composed of the original plant and an internal model. The augmented system is a multi‐input system containing both dynamic uncertainty and time‐varying static uncertainty. By decomposing the multi‐input control problem into several single‐input control problems, we will solve the problem by solving several single‐input control problems via a recursive approach utilizing the changing supply function technique. The theoretical result is applied to the speed tracking control and load torque disturbance rejection problem of a surface‐mounted permanent magnet synchronous motor. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
We consider the assumption of existence of the general nonlinear internal model that is introduced in the design of robust output regulators for a class of minimum-phase nonlinear systems with rth degree (r ≥ 2). The robust output regulation problem can be converted into a robust stabilisation problem of an augmented system consisting of the given plant and a high-gain nonlinear internal model, perfectly reproducing the bounded including not only periodic but also nonperiodic exogenous signal from a nonlinear system, which satisfies some general immersion assumption. The state feedback controller is designed to guarantee the asymptotic convergence of system errors to zero manifold. Furthermore, the proposed scheme makes use of output feedback dynamic controller that only processes information from the regulated output error by using high-gain observer to robustly estimate the derivatives of the regulated output error. The stabilisation analysis of the resulting closed-loop systems leads to regional as well as semi-global robust output regulation achieved for some appointed initial condition in the state space, for all possible values of the uncertain parameter vector and the exogenous signal, ranging over an arbitrary compact set.  相似文献   

16.
In this paper, we consider the global robust output regulation problem for a class of uncertain nonlinear systems with nonlinear exosystems. By employing the internal model approach, we show that this problem boils down to a global robust stabilization problem of a time-varying nonlinear system in lower triangular form, the solution of which will lead to the solution of the global robust output regulation problem. An example shows the effectiveness of the proposed approach.  相似文献   

17.
In this paper, the adaptive robust simultaneous stabilization problem of uncertain multiple n-degree-of-freedom (n-DOF) robot systems is studied using the Hamiltonian function method, and the corresponding adaptive L2 controller is designed. First, we investigate the adaptive simultaneous stabilization problem of uncertain multiple n-DOF robot systems without external disturbance. Namely, the single uncertain n-DOF robot system is transformed into an equivalent Hamiltonian form using the unified partial derivative operator (UP-DO) and potential energy shaping method, and then a high dimensional Hamiltonian system for multiple uncertain robot systems is obtained by applying augmented dimension technology, and a single output feedback controller is designed to ensure the simultaneous stabilization for the higher dimensional Hamiltonian system. On this basis, we further study the adaptive robust simultaneous stabilization control problem for the uncertain multiple n-DOF robot systems with external disturbances, and design an adaptive robust simultaneous stabilization controller. Finally, the simulation results show that the adaptive robust simultaneous stabilization controller designed in this paper is very effective in stabilizing multi-robot systems at the same time.  相似文献   

18.
This paper studies the global robust output regulation problem for lower triangular systems subject to nonlinear exosystems. By employing the internal model approach, this problem can be boiled down to a global robust stabilization problem of a time-varying nonlinear system in the cascade-connected form. Then, a set of sufficient conditions for the solvability of the problem is derived, and thus, leading to the solution to the global robust output regulation problem. An application of the main result of this paper is also proposed.  相似文献   

19.
This paper considers the robust output regulation problem for time‐varying nonlinear systems with a time‐varying exosystem. A framework for converting the problem into a stabilization problem of an augmented system is established. The problem is solved for a class of time‐varying output feedback systems with a time‐varying exosystem. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

20.
This paper presents the solvability conditions for the global robust output regulation problem for a class of output feedback systems with an uncertain exosystem by using output feedback control. An adaptive control technique is used to handle the unknown parameter vector in the exosystem. It is shown that this unknown parameter vector can be exactly estimated asymptotically if a controller containing a minimal internal model is employed. The effectiveness of our approach has been illustrated by an asymptotic tracking problem of a generalized fourth‐order Lorenz system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号