首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The alerting effects of both caffeine and short wavelength (blue) light have been consistently reported. The ability of blue light to enhance alertness and cognitive function via non-image forming neuropathways have been suggested as a non-pharmacological countermeasure for drowsiness across a range of occupational settings. Here we compare and contrast the alerting and psychomotor effects of 240 mg of caffeine and a 1-h dose of ~40 lx blue light in a non-athletic population. Twenty-one healthy subjects performed a computer-based psychomotor vigilance test before and after each of four randomly assigned trial conditions performed on different days: white light/placebo; white light/240 mg caffeine; blue light/placebo; blue light/240 mg caffeine. The Karolinska Sleepiness Scale was used to assess subjective measures of alertness. Both the caffeine only and blue light only conditions enhanced accuracy in a visual reaction test requiring a decision and an additive effect was observed with respect to the fastest reaction times. However, in a test of executive function, where a distraction was included, caffeine exerted a negative effect on accuracy. Furthermore, the blue light only condition consistently outperformed caffeine when both congruent and incongruent distractions were presented. The visual reactions in the absence of a decision or distraction were also enhanced in the blue light only condition and this effect was most prominent in the blue-eyed participants. Overall, blue light and caffeine demonstrated distinct effects on aspects of psychomotor function and have the potential to positively influence a range of settings where cognitive function and alertness are important. Specifically, despite the widespread use of caffeine in competitive sporting environments, the possible impact of blue light has received no research attention.  相似文献   

2.
Previous studies have shown increased sleepiness and mood changes in shiftworkers, which may be due to sleep deprivation or circadian disruption. Few studies, however, have compared responses of experienced shiftworkers and non-shiftworkers to sleep deprivation in an identical laboratory setting. The aim of this laboratory study, therefore, was to compare long-term shiftworkers and non-shiftworkers and to investigate the effects of one night of total sleep deprivation (30.5?h of continuous wakefulness) and recovery sleep on psychomotor vigilance, self-rated alertness, and mood. Eleven experienced male shiftworkers (shiftwork ≥5 yrs) were matched with 14 non-shiftworkers for age (mean?±?SD: 35.7?±?7.2 and 32.5?±?6.2 yrs, respectively) and body mass index (BMI) (28.7?±?3.8 and 26.6?±?3.4?kg/m2, respectively). After keeping a 7-d self-selected sleep/wake cycle (7.5/8?h nocturnal sleep), both groups entered a laboratory session consisting of a night of adaptation sleep and a baseline sleep (each 7.5/8?h), a sleep deprivation night, and recovery sleep (4-h nap plus 7.5/8?h nighttime sleep). Subjective alertness and mood were assessed with the Karolinska Sleepiness Scale (KSS) and 9-digit rating scales, and vigilance was measured by the visual psychomotor vigilance test (PVT). A mixed-model regression analysis was carried out on data collected every hour during the sleep deprivation night and on all days (except for the adaptation day), at .25, 4.25, 5.25, 11.5, 12.5, and 13.5?h after habitual wake-up time. Despite similar circadian phase (melatonin onset), demographics, food intake, body posture, and environmental light, shiftworkers felt significantly more alert, more cheerful, more elated, and calmer than non-shiftworkers throughout the laboratory study. In addition, shiftworkers showed a faster median reaction time (RT) compared to non-shiftworkers, although four other PVT parameters did not differ between the groups. As expected, both groups showed a decrease in subjective alertness and PVT performance during and following the sleep deprivation night. Subjective sleepiness and most aspects of PVT performance returned to baseline levels after a nap and recovery sleep. The mechanisms underlying the observed differences between shiftworkers and non-shiftworkers require further study, but may be related to the absence of shiftwork the week prior to and during the laboratory study as well as selection into and out of shiftwork. (Author correspondence: )  相似文献   

3.
Sleep restriction causes impaired cognitive performance that can result in adverse consequences in many occupational settings. Individuals may rely on self-perceived alertness to decide if they are able to adequately perform a task. It is therefore important to determine the relationship between an individual’s self-assessed alertness and their objective performance, and how this relationship depends on circadian phase, hours since awakening, and cumulative lost hours of sleep. Healthy young adults (aged 18–34) completed an inpatient schedule that included forced desynchrony of sleep/wake and circadian rhythms with twelve 42.85-hour “days” and either a 1:2 (n = 8) or 1:3.3 (n = 9) ratio of sleep-opportunity:enforced-wakefulness. We investigated whether subjective alertness (visual analog scale), circadian phase (melatonin), hours since awakening, and cumulative sleep loss could predict objective performance on the Psychomotor Vigilance Task (PVT), an Addition/Calculation Test (ADD) and the Digit Symbol Substitution Test (DSST). Mathematical models that allowed nonlinear interactions between explanatory variables were evaluated using the Akaike Information Criterion (AIC). Subjective alertness was the single best predictor of PVT, ADD, and DSST performance. Subjective alertness alone, however, was not an accurate predictor of PVT performance. The best AIC scores for PVT and DSST were achieved when all explanatory variables were included in the model. The best AIC score for ADD was achieved with circadian phase and subjective alertness variables. We conclude that subjective alertness alone is a weak predictor of objective vigilant or cognitive performance. Predictions can, however, be improved by knowing an individual’s circadian phase, current wake duration, and cumulative sleep loss.  相似文献   

4.
Light exposure elicits numerous effects on human physiology and behavior, such as better cognitive performance and mood. Here we investigated the role of morning light exposure as a countermeasure for impaired cognitive performance and mood under sleep restriction (SR). Seventeen participants took part of a 48h laboratory protocol, during which three different light settings (separated by 2?wks) were administered each morning after two 6-h sleep restriction nights: a blue monochromatic LED (light-emitting diode) light condition (BL; 100?lux at 470?nm for 20?min) starting 2?h after scheduled wake-up time, a dawn-simulating light (DsL) starting 30?min before and ending 20?min after scheduled wake-up time (polychromatic light gradually increasing from 0 to 250?lux), and a dim light (DL) condition for 2?h beginning upon scheduled wake time (<8?lux). Cognitive tasks were performed every 2?h during scheduled wakefulness, and questionnaires were administered hourly to assess subjective sleepiness, mood, and well-being. Salivary melatonin and cortisol were collected throughout scheduled wakefulness in regular intervals, and the effects on melatonin were measured after only one light pulse. Following the first SR, analysis of the time course of cognitive performance during scheduled wakefulness indicated a decrease following DL, whereas it remained stable following BL and significantly improved after DsL. Cognitive performance levels during the second day after SR were not significantly affected by the different light conditions. However, after both SR nights, mood and well-being were significantly enhanced after exposure to morning DsL compared with DL and BL. Melatonin onset occurred earlier after morning BL exposure, than after morning DsL and DL, whereas salivary cortisol levels were higher at wake-up time after DsL compared with BL and DL. Our data indicate that exposure to an artificial morning dawn simulation light improves subjective well-being, mood, and cognitive performance, as compared with DL and BL, with minimal impact on circadian phase. Thus, DsL may provide an effective strategy for enhancing cognitive performance, well-being, and mood under mild sleep restriction.  相似文献   

5.
6.
Although studies have reported the effects of the menstrual cycle on melatonin rhythmicity, none has investigated the effects of menopause on the melatonin rhythm. The circadian rhythm in melatonin and its relationship to subjective alertness was investigated in pre‐ and postmenopausal women under constant routine conditions (controlled posture, dim lighting, calorie intake, temperature, and prolonged wakefulness). Eleven healthy pre‐menopausal (42±4 yr) and 10 postmenopausal women (55±2 yr) participated in the study. Salivary melatonin samples and subjective measures of alertness and sleepiness were assessed hourly during the 22 h constant routine protocol. Postmenopausal women had a significantly earlier melatonin acrophase (1.1±0.5 h clock time in decimal h; mean±SEM, p<0.05) compared to the pre‐menopausal women (2.3±0.3 h). There was no significant difference between melatonin onset and amplitude between the pre‐menopausal and postmenopausal women. Self‐rated alertness declined in both study groups as the length of sleep deprivation increased. Melatonin onset preceded the onset of self‐rated sleepiness in both groups. The time interval between melatonin onset and the onset of sleepiness and alertness offset was significantly greater in the postmenopausal women compared to the pre‐menopausal women. In conclusion, under controlled experimental conditions the timing of the melatonin rhythm was advanced in postmenopausal women altering its phase relationship to subjective alertness and sleepiness.  相似文献   

7.
The aim of this study was to assess whether the shift from afternoon to morning classes reduces the duration of sleep and whether this reduction has any relation to body fat measurements. This is a follow-up study in which students (n = 379), 12.4 (SD?±?0.7) yrs old, were evaluated before and after the school schedule shift, with a 1-yr interval between the first and second data collections. Adolescents were divided into two groups: an afternoon-morning group (students who shifted from afternoon to morning classes) and an afternoon-afternoon group (students who remained in afternoon classes). The morning schedule of classes lasted from 07:30 and 12:00?h, and the afternoon schedule of classes lasted from 13:00 and 17:30?h. Self-reported bedtime, wake-up time, and time-in-bed were obtained. Body mass index, waist circumference, and body fat percentage were obtained by direct measures. The results showed a reduction of time-in-bed during weekdays for those students who changed to the morning session (p < .001). Analysis of covariance (ANCOVA) for repeated measures of anthropometric differences between afternoon-afternoon and afternoon-morning groups showed no effect of the school schedule change on weight gain. In conclusion, the time-in-bed reduction in the period analyzed cannot be considered to be a mediating factor to modifications in overweight anthropometric indicators. (Author correspondence: )  相似文献   

8.
9.
10.
Increasing age is associated with deficits in a wide range of cognitive domains as well as with structural brain changes. Recent studies using diffusion tensor imaging (DTI) have shown that microstructural integrity of white matter is associated with cognitive performance in elderly persons, especially on tests that rely on perceptual speed. We used structural equation modeling to investigate associations between white matter microstructure and cognitive functions in a population-based sample of elderly persons (age ≥ 60 years), free of dementia, stroke, and neurological disorders (n = 253). Participants underwent a magnetic resonance imaging scan, from which mean fractional anisotropy (FA) and mean diffusivity (MD) of seven white matter tracts were quantified. Cognitive functioning was analyzed according to performance in five task domains (perceptual speed, episodic memory, semantic memory, letter fluency, and category fluency). After controlling for age, FA and MD were exclusively related to perceptual speed. When further stratifying the sample into two age groups, the associations were reliable in the old-old (≥78 years) only. This relationship between white matter microstructure and perceptual speed remained significant after excluding persons in a preclinical dementia phase. The observed pattern of results suggests that microstructural white matter integrity may be especially important to perceptual speed among very old adults.  相似文献   

11.
12.
Decline in cognitive performance in old age is linked to both suboptimal neural processing in grey matter (GM) and reduced integrity of white matter (WM), but the whole-brain structure-function-cognition associations remain poorly understood. Here we apply a novel measure of GM processing–moment-to-moment variability in the blood oxygenation level-dependent signal (SDBOLD)—to study the associations between GM function during resting state, performance on four main cognitive domains (i.e., fluid intelligence, perceptual speed, episodic memory, vocabulary), and WM microstructural integrity in 91 healthy older adults (aged 60-80 years). We modeled the relations between whole-GM SDBOLD with cognitive performance using multivariate partial least squares analysis. We found that greater SDBOLD was associated with better fluid abilities and memory. Most of regions showing behaviorally relevant SDBOLD (e.g., precuneus and insula) were localized to inter- or intra-network “hubs” that connect and integrate segregated functional domains in the brain. Our results suggest that optimal dynamic range of neural processing in hub regions may support cognitive operations that specifically rely on the most flexible neural processing and complex cross-talk between different brain networks. Finally, we demonstrated that older adults with greater WM integrity in all major WM tracts had also greater SDBOLD and better performance on tests of memory and fluid abilities. We conclude that SDBOLD is a promising functional neural correlate of individual differences in cognition in healthy older adults and is supported by overall WM integrity.  相似文献   

13.
《Chronobiology international》2013,30(8):1127-1138
To date, studies investigating the consequences of shiftwork have predominantly focused on external (local) time. Here, we report the daily variation in cognitive performance in rotating shiftworkers under real-life conditions using the psychomotor vigilance test (PVT) and show that this function depends both on external and internal (biological) time. In addition to this high sensitivity of PVT performance to time-of-day, it has also been extensively applied in sleep deprivation protocols. We, therefore, also investigated the impact of shift-specific sleep duration and time awake on performance. In two separate field studies, 44 young workers (17 females, 27 males; age range 20–36 yrs) performed a PVT test every 2?h during each shift. We assessed chronotype by the MCTQShift (Munich ChronoType Questionnaire for shiftworkers). Daily sleep logs over the 4-wk study period allowed for the extraction of shift-specific sleep duration and time awake in a given shift, as well as average sleep duration (“sleep need”). Median reaction times (RTs) significantly varied across shifts, depending on both Local Time and Internal Time. Variability of reaction times around the 24 h mean (≈ ±5%) was best explained by a regression model comprising both factors, Local Time and Internal Time (p < .001). Short (15th percentile; RT15%) and long (85th percentile; RT85%) reaction times were differentially affected by Internal Time and Local Time. During night shifts, only median RT and RT85% were impaired by the duration of time workers had been awake (p?<?.01, consistent with the highest sleep pressure), but not RT15%. Proportion of sleep before a test day (relative to sleep need) significantly affected median RT and RT85% during morning shifts (p?<?.01). RT15% was worst in the beginning of the morning shift, but improved to levels above average with increasing time awake (p < .05), whereas RT85% became worse (p < .05). Hierarchical mixed models confirmed the importance of chronotype and sleep duration on cognitive performance in shiftworkers, whereas the effect of time awake requires further research. Our finding that both Local Time and Internal Time, in conjunction with shift-specific sleep behavior, strongly influence performance extends predictions derived from laboratory studies. (Author correspondence: )  相似文献   

14.
15.

Objectives

To examine the effects of sleep restriction on firefighters’ physical task performance during simulated wildfire suppression.

Methods

Thirty-five firefighters were matched and randomly allocated to either a control condition (8-hour sleep opportunity, n = 18) or a sleep restricted condition (4-hour sleep opportunity, n = 17). Performance on physical work tasks was evaluated across three days. In addition, heart rate, core temperature, and worker activity were measured continuously. Rate of perceived and exertion and effort sensation were evaluated during the physical work periods.

Results

There were no differences between the sleep-restricted and control groups in firefighters’ task performance, heart rate, core temperature, or perceptual responses during self-paced simulated firefighting work tasks. However, the sleep-restricted group were less active during periods of non-physical work compared to the control group.

Conclusions

Under self-paced work conditions, 4 h of sleep restriction did not adversely affect firefighters’ performance on physical work tasks. However, the sleep-restricted group were less physically active throughout the simulation. This may indicate that sleep-restricted participants adapted their behaviour to conserve effort during rest periods, to subsequently ensure they were able to maintain performance during the firefighter work tasks. This work contributes new knowledge to inform fire agencies of firefighters’ operational capabilities when their sleep is restricted during multi-day wildfire events. The work also highlights the need for further research to explore how sleep restriction affects physical performance during tasks of varying duration, intensity, and complexity.  相似文献   

16.
Due to the mixed findings of previous studies, it is still difficult to provide guidance on how to best manage sleep inertia after waking from naps in operational settings. One of the few factors that can be manipulated is the duration of the nap opportunity. The aim of the present study was to investigate the magnitude and time course of sleep inertia after waking from short (20-, 40- or 60-min) naps during simulated night work and extended operations. In addition, the effect of sleep stage on awakening and duration of slow wave sleep (SWS) on sleep inertia was assessed. Two within-subject protocols were conducted in a controlled laboratory setting. Twenty-four healthy young men (Protocol 1: n?=?12, mean age?=?25.1 yrs; Protocol 2: n?=?12, mean age?=?23.2 yrs) were provided with nap opportunities of 20-, 40-, and 60-min (and a control condition of no nap) ending at 02:00?h after ~20?h of wakefulness (Protocol 1 [P1]: simulated night work) or ending at 12:00?h after ~30?h of wakefulness (Protocol 2 [P2]: simulated extended operations). A 6-min test battery, including the Karolinska Sleepiness Scale (KSS) and the 4-min 2-Back Working Memory Task (WMT), was repeated every 15?min the first hour after waking. Nap sleep was recorded polysomnographically, and in all nap opportunities sleep onset latency was short and sleep efficiency high. Mixed-model analyses of variance (ANOVA) for repeated measures were calculated and included the factors time (time post-nap), nap opportunity (duration of nap provided), order (order in which the four protocols were completed), and the interaction of these terms. Results showed no test x nap opportunity effect (i.e., no effect of sleep inertia) on KSS. However, WMT performance was impaired (slower reaction time, fewer correct responses, and increased omissions) on the first test post-nap, primarily after a 40- or 60-min nap. In P2 only, performance improvement was evident 45?min post-awakening for naps of 40?min or more. In ANOVAs where sleep stage on awakening was included, the test x nap opportunity interaction was significant, but differences were between wake and non-REM Stage 1/Stage 2 or wake and SWS. A further series of ANOVAs showed no effect of the duration of SWS on sleep inertia. The results of this study demonstrate that no more than 15?min is required for performance decrements due to sleep inertia to dissipate after nap opportunities of 60?min or less, but subjective sleepiness is not a reliable indicator of this effect. Under conditions where sleep is short, these findings also suggest that SWS, per se, does not contribute to more severe sleep inertia. When wakefulness is extended and napping occurs at midday (i.e., P2), nap opportunities of 40- and 60-min have the advantage over shorter duration sleep periods, as they result in performance benefits ~45?min after waking.  相似文献   

17.

Background

Cognitive performance deteriorates during extended wakefulness and circadian phase misalignment, and some individuals are more affected than others. Whether performance is affected similarly across cognitive domains, or whether cognitive processes involving Executive Functions are more sensitive to sleep and circadian misalignment than Alertness and Sustained Attention, is a matter of debate.

Methodology/Principal Findings

We conducted a 2 × 12-day laboratory protocol to characterize the interaction of repeated partial and acute total sleep deprivation and circadian phase on performance across seven cognitive domains in 36 individuals (18 males; mean ± SD of age = 27.6±4.0 years). The sample was stratified for the rs57875989 polymorphism in PER3, which confers cognitive susceptibility to total sleep deprivation. We observed a deterioration of performance during both repeated partial and acute total sleep deprivation. Furthermore, prior partial sleep deprivation led to poorer cognitive performance in a subsequent total sleep deprivation period, but its effect was modulated by circadian phase such that it was virtually absent in the evening wake maintenance zone, and most prominent during early morning hours. A significant effect of PER3 genotype was observed for Subjective Alertness during partial sleep deprivation and on n-back tasks with a high executive load when assessed in the morning hours during total sleep deprivation after partial sleep loss. Overall, however, Subjective Alertness and Sustained Attention were more affected by both partial and total sleep deprivation than other cognitive domains and tasks including n-back tasks of Working Memory, even when implemented with a high executive load.

Conclusions/Significance

Sleep loss has a primary effect on Sleepiness and Sustained Attention with much smaller effects on challenging Working Memory tasks. These findings have implications for understanding how sleep debt and circadian rhythmicity interact to determine waking performance across cognitive domains and individuals.  相似文献   

18.
The pigment content and rates of primary photosynthetic reactions were determined in chloroplasts of 14-day-old pine (Pinus silvestris L.) seedlings grown in light and darkness. In addition, the functional activities were investigated in chloroplasts from dark-grown seedlings exposed to white, red ( = 670 nm), and red + far-red ( = 748 nm) light. Dark-grown seedlings were capable of performing the Hill reaction, noncyclic photophosphorylation, and phenazine methosulfate–supported photophosphorylation, although the reaction rates in chloroplasts from dark-grown plants were considerably lower than in preparations from light-grown plants. Light treatment of dark-grown seedlings rapidly activated the photoreduction of ferricyanide and photophosphorylation, while the additional accumulation of green pigments started only after a lag period of two hours. Preirradiation of dark-grown seedlings with red light stimulated the formation of pigments, especially chlorophyll b, as well as the functional activity of chloroplasts. When far-red light was applied after red-light exposure, the processes examined were inhibited. It is concluded that accumulation of the light-harvesting complex and functional activities of chloroplasts at the photosystem II level in pine seedlings are controlled by the phytochrome.  相似文献   

19.

Background

Alzheimer''s disease (AD) is the most frequently diagnosed form of dementia resulting in cognitive impairment. Many AD mouse studies, using the methyl donor S-adenosylmethionine (SAM), report improved cognitive ability, but conflicting results between and within studies currently exist. To address this, we conducted a meta-analysis to evaluate the effect of SAM on cognitive ability as measured by Y maze performance. As supporting evidence, we include further discussion of improvements in cognitive ability, by SAM, as measured by the Morris water maze (MWM).

Methods

We conducted a comprehensive literature review up to April 2014 based on searches querying MEDLINE, EMBASE, Web of Science, the Cochrane Library and Proquest Theses and Dissertation databases. We identified three studies containing a total of 12 experiments that met our inclusion criteria and one study for qualitative review. The data from these studies were used to evaluate the effect of SAM on cognitive performance according to two scenarios: 1. SAM supplemented folate deficient (SFD) diet compared to a folate deficient (FD) diet and 2. SFD diet compared to a nutrient complete (NC) diet. Hedge''s g was used to calculate effect sizes and mixed effects model meta-regression was used to evaluate moderating factors.

Results

Our findings showed that the SFD diet was associated with improvements in cognitive performance. SFD diet mice also had superior cognitive performance compared to mice on an NC diet. Further to this, meta-regression analyses indicated a significant positive effect of study quality score and treatment duration on the effect size estimate for both the FD vs SFD analysis and the SFD vs NC analysis.

Conclusion

The findings of this meta-analysis demonstrate efficacy of SAM in acting as a cognitive performance-enhancing agent. As a corollary, SAM may be useful in improving spatial memory in patients suffering from many dementia forms including AD.  相似文献   

20.

Objectives

Noise often has detrimental effects on performance. However, because of the phenomenon of stochastic resonance (SR), auditory white noise (WN) can alter the “signal to noise” ratio and improve performance. The Moderate Brain Arousal (MBA) model postulates different levels of internal “neural noise” in individuals with different attentional capacities. This in turn determines the particular WN level most beneficial in each individual case–with one level of WN facilitating poor attenders but hindering super-attentive children. The objective of the present study is to find out if added WN affects cognitive performance differently in children that differ in attention ability.

Methods

Participants were teacher-rated super- (N = 25); normal- (N = 29) and sub-attentive (N = 36) children (aged 8 to 10 years). Two non-executive function (EF) tasks (a verbal episodic recall task and a delayed verbal recognition task) and two EF tasks (a visuo-spatial working memory test and a Go-NoGo task) were performed under three WN levels. The non-WN condition was only used to control for potential differences in background noise in the group testing situations.

Results

There were different effects of WN on performance in the three groups-adding moderate WN worsened the performance of super-attentive children for both task types and improved EF performance in sub-attentive children. The normal-attentive children’s performance was unaffected by WN exposure. The shift from moderate to high levels of WN had little further effect on performance in any group.

Significance

The predicted differential effect of WN on performance was confirmed. However, the failure to find evidence for an inverted U function challenges current theories. Alternative explanations are discussed. We propose that WN therapy should be further investigated as a possible non-pharmacological treatment for inattention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号