首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用X射线衍射仪、扫描电镜、电子背散射衍射、透射电镜以及拉伸实验,研究了FCC结构Al_(0.3)CoCrFeNi高熵合金经90%压下量轧制及退火后的组织和力学性能。结果表明:经轧制及退火(600~1000℃)后,合金发生再结晶,富集Al、Ni原子的有序BCC相优先形成于再结晶FCC相的晶界处,且其体积分数随着退火温度上升先增大后减小。轧制显著强化该合金,随后600℃退火可实现不牺牲均匀塑性而进一步强化该合金的目的,升高退火温度则引起该合金强度下降,塑性增大。经800℃退火后合金表现出较为理想的强度-塑性匹配,其均匀伸长率为34.1%,且抗拉强度可高达935MPa,约是铸态合金(303MPa)的3倍,这主要归结于再结晶组织细化及有序BCC相的析出强化。  相似文献   

2.
雾化技术是一种获得微细球形合金粉体的有效方法,其中雾化过程中的过冷度是影响粉体性能的重要因素。本文借助DSC等实验手段,研究了粉体尺寸和冷却速度对粉体过冷度和显微组织的影响,以及粉体尺寸,冷却速度和过冷度直间的关系。结果表明,粉体尺寸和冷却速度越小,粉体冷却时的过冷度越大。同时,较大的过冷度会显著降低粉体中树枝晶的臂间距。另外,粉体尺寸越小,粉体中的胞状晶的比例越高,晶粒的尺寸也显著减小。  相似文献   

3.
在H2气氛下,采用半固态轧制工艺将Al-5.8Zn-1.63Mg-2.22Cu-0.12Zr(质量分数)粉末成功轧制成相对密度为76.1%~88.0%的生带材。分析了温度对生带材显微组织和力学性能的影响规律。当轧制温度由580°C上升到610°C时,加速了原始颗粒边界和内部孔洞的消失、粒子的扩散、晶界的变化;显微组织演变的机制由致密为主的阶段转变为以晶粒粗化为主的阶段;η(MgZn2)相的数量在减少,更多的Al2Cu粒子在晶界处析出。获得了Al-5.8Zn-1.63Mg-2.22Cu-0.12Zr(质量分数)粉末的最佳半固态轧制温度。当液相分数为53%~67%时可以制备出具有较高密度的生带材。该研究有助于采用半固态轧制将金属粉末制备出性能较好的带材。  相似文献   

4.
利用X射线衍射仪、光学显微镜、扫描电镜、电子背散射衍射、硬度测试和拉伸实验等手段,研究了退火温度对冷轧变形量为95%的Al_(0.3)CoCrFeNi高熵合金微观组织和力学性能的影响。结果表明:合金经过95%冷轧变形后仍保持FCC单相;冷轧变形后的合金的硬度明显提高,塑性大幅下降,强度提高了4~5倍;经过600℃以上温度退火后,合金发生再结晶;随着退火温度的升高,晶粒尺寸逐渐增大,合金强度下降,塑性提高,断口形貌由解理特征向韧窝特征转变;同时在600~800℃退火时合金中有少量第二相(BCC相)析出,温度越高,第二相析出越明显。  相似文献   

5.
采用真空电弧熔炼炉制备Al_(0.1)CoCrFeNiB_x(x为摩尔分数,x=0, 0.1, 0.3)高熵合金,通过X射线衍射分析、光学电镜和扫描电镜观察以及压缩性能的测试,分析了少量硼加入对Al_(0.1)CoCrFeNi高熵合金微观组织和压缩性能的影响。结果表明,少量硼加入使单相的Al_(0.1)CoCrFeNi高熵合金析出了第二相,显著地提高了Al_(0.1)CoCrFeNi的压缩强度,而压缩塑性没有下降。当加入摩尔分数为0.1的硼后,合金屈服强度增加了1.2倍;而加入摩尔分数为0.3的硼后,合金屈服强度增加了4.3倍。  相似文献   

6.
在1173K下将金属氧化物在CaCl_2熔盐中进行电脱氧,制备了CoCrFeNi高熵合金。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和能量色散X射线能谱(EDS)研究了不同电解时间下金属氧化物转化为高熵合金的相变过程。结果表明,CoCrFeNi高熵合金的形成过程包括快速脱氧和深度脱氧2个阶段。在快速脱氧阶段,在1h内去除了烧结氧化物球团中93.93%(质量分数)的氧,电流效率达到89.95%。电解结束后,产物的氧含量可达0.26%(质量分数),电流效率为17.93%。该高熵合金的形成过程可用于指导建立低成本、高效率的电化学路线。  相似文献   

7.
研究了Al_(0.5)CoCrCuFeNiB_x(x=0~1)的组织、相组成、硬度及耐磨性能。并预测了Al_(0.5)CoCrCuFeNiB_x(x=0~1)中简单固溶体形成规律。未添加硼元素的合金具有简单fcc固溶体结构。添加硼元素后,合金由简单fcc固溶体及多元硼化物组成。硼以硼化物形式析出,没有固溶到fcc固溶体中,因而添加硼对fcc固溶体的晶格常数无影响。硼化物的析出使合金的硬度提高,并且硬度随着硼含量的增加而呈线性增加。当硼含量x≤0.4时,合金的磨耗阻抗变化不明显,但当硼含量x≥0.6时,合金的磨耗阻抗随着硼含量增加而呈线性增加。随着硼含量的增加,合金的磨损机制由粘着磨损转变为氧化磨损。合金硬度与耐磨性能的提高是高硬度的粗大硼化物与韧性的fcc固溶体基体共同作用的结果。  相似文献   

8.
利用X射线衍射仪、光学显微镜、扫描电镜、电子背散射衍射、硬度测试和拉伸实验等手段,研究了退火温度对冷轧变形量为95%的Al_(0.3)CoCrFeNi高熵合金微观组织和力学性能的影响。结果表明:合金经过95%冷轧变形后仍保持FCC单相;冷轧变形后的合金的硬度明显提高,塑性大幅下降,强度提高了4~5倍;经过600℃以上温度退火后,合金发生再结晶;随着退火温度的升高,晶粒尺寸逐渐增大,合金强度下降,塑性提高,断口形貌由解理特征向韧窝特征转变;同时在600~800℃退火时合金中有少量第二相(BCC相)析出,温度越高,第二相析出越明显。  相似文献   

9.
采用水冷铜坩埚真空感应悬浮熔炼制备了多组元高熵合金Al0.5Co Cr Cu Fe Ni,研究了不同热处理工艺对合金的显微组织和硬度的影响规律。结果表明,Al0.5Co Cr Cu Fe Ni高熵合金相结构简单,在铸态下由两种不同成分的FCC相组成,枝晶处为贫Cu的FCC1相,枝晶间为富Cu的FCC2相,显微组织为树枝晶形貌,存在一定的枝晶偏析。合金制备态的硬度为255 HV0.5。合金具有良好的热稳定性,随着热处理温度的升高,合金的相结构和硬度均无太大的变化。冷却方式对合金的显微组织和相结构影响不大,但炉冷后合金的硬度比空冷和水冷时高。  相似文献   

10.
采用机械合金化-真空热压烧结(MA-HP)法制备了Al0.4FeCrNi Co1.5Ti0.3高熵合金。利用XRD、SEM和力学压缩试验机分析Al0.4FeCrNiCo1.5Ti0.3合金的微观组织、相转变以及力学性能。结果表明:经高能球磨10 h,合金中形成了简单固溶体fcc和bcc相,而经过热压烧结的Al0.4Fe Cr Ni Co1.5Ti0.3合金以单一fcc相及2种bcc相(bcc1、bcc2)组成。热压烧结Al0.4Fe Cr Ni Co1.5Ti0.3合金致密度达99.48%,其微观硬度(HV),屈服强度、断裂强度、压缩率分别达到725 MPa,2.13 GPa,2.54 GPa,20.1%,合金优异的力学性能主要是因为合金的固溶强化;断裂模式为解理断裂及塑性断裂的混合机制。  相似文献   

11.
通过均匀化热处理、冷轧和再结晶退火方法制备CoCrFeNiMn高熵合金。采用X射线衍射议、光学显微镜、扫描电子显微镜和多功能试验机研究热机处理对合金显微组织和不同温度下拉伸性能的影响。结果表明,再结晶退火后,铸态树枝晶结构转化为等轴晶结构,在此过程中仅观察到单一的面心立方相。在最大轧制比(40%)条件下得到的晶粒最细的合金由于晶界强化作用表现出最高的强度,而其伸长率随温度呈凹形变化特征。较粗晶粒合金的伸长率和加工硬化能力都随温度升高而单调下降。中间温度观察到的锯齿流变是由于位错的有效钉扎作用,它证明了动态应变强化的发生,并导致伸长率的降低。另外,拉伸断面上的韧窝呈典型的塑性断裂特征。  相似文献   

12.
用铜模吸铸法成功地合成了由2个固溶体相构成的高熵合金(HEA)Cu_(29)Zr_(32)Ti_(15)Al_5Ni_(19)和相同成分的非晶态合金(HE-BMG)。实验结果表明该成分的高熵合金具有高的非晶形成能力。铸态高熵合金Cu_(29)Zr_(32)Ti_(15)Al_5Ni_(19)的抗压强度为1127 MPa。该合金表现出良好的抗回火性能,经750°C处理2 h后,该合金硬度保持在8260 MPa。  相似文献   

13.
研究预退火温度对气雾化Al-27%Si合金粉末压制性能的影响,并分析退火粉末的显微组织和硬度。预退火不仅降低Al基体硬度,而且导致针状共晶Si相熔解、过饱和固溶Si原子析出和长大以及初晶Si相球化。合金粉末的压制性能随着退火温度升高至400°C而逐渐提高;但是,由于出现Si-Si相缠结和密集分布的Si颗粒,粉末的压制性能在退火温度高于400°C时反而有所下降。粉末在400°C退火4 h后,其相对密度最大达到96.1%。另外,预退火合金粉末压制性能的差异在压制压力为175 MPa时达到最大。因此,通过合适的预退火处理可以大幅提高气雾化Al-Si合金粉末的室温压制性能。  相似文献   

14.
首先采用气体雾化方式制备氧化物弥散强化(Oxide dispersion strengthened,ODS)钢的合金粉,然后经短时球磨及热等静压烧结成形方法制备了氧化物弥散强化钢9Cr-ODS。采用电子背散射衍射(EBSD)、透射电镜(TEM),三维原子探针(APT)和万能拉伸实验机等研究了9Cr-ODS钢的组织结构和力学性能。实验结果表明:9Cr-ODS氧化物弥散强化钢的组织为铁素体和马氏体的双相组织,组织中弥散分布着极高密度的纳米析出相。三维原子探针的结果表明9Cr-ODS钢中这些纳米析出相的尺寸小于5 nm、分布密度可以达到3.5×10~(22)/m~3,其中Y_2Ti_2O_7相分布密度达到1.57×10~(20)/m~3,同时在其析出相中还发现一些尺寸稍大的CrTi_2O_5氧化物相。与典型的低活化铁素体/马氏体钢、ODS钢相比较,雾化合金粉制备的9Cr-ODS钢表现出更加优异的力学性能。  相似文献   

15.
通过热压缩实验研究Cu-13Zn-1Ni-1Sn-1.5Al仿金黄铜在温度为953~1123 K和应变速率为0.001~1 s-1条件下的热变形特征。应力-应变曲线表明,流动应力随着温度的升高和应变速率的降低而降低。在0.01 s-1的恒定应变速率下,当温度达到1073 K时,合金的显微组织中出现动态再结晶晶粒。建立合金在不同应变(ε=0.1, 0.2,0.3, 0.4, 0.5, 0.6, 0.7, 0.8)条件下的本构方程并计算其变形激活能。当应变为0.8时,合金的本构方程为=7.22×109[sinh(0.0187σ)]3.67exp[-227.17/(RT)],变形激活能为227.17 k J/mol。绘制仿金合金在不同应变条件下的功率耗散图和失稳图,得到合金在热压缩工艺中的最佳热变形温度范围为1010~1040 K,应变速率为1 s-1。  相似文献   

16.
综述了近年来难熔高熵合金(RHEAs)在合金设计、显微组织和力学性能方面的研究进展,并重点讨论了内在的强化机制和变形行为。难熔高熵合金主要由近等摩尔比的难熔元素组成,具有优异的力学性能,尤其是高温力学性能。然而,大多数难熔高熵合金的室温塑性有限。为了解决这一问题,研究人员已开展了大量相关研究工作,其中某些难熔高熵合金材料具有很大的高温实际应用潜力。难熔高熵合金除了具有优异的力学性能外,在其他性能方面也有优势,如生物相容性和耐磨性。最后,还讨论了难熔高熵合金目前存在的问题和对未来发展的建议。  相似文献   

17.
采用机械合金化和热压烧结制备FeCoCrNiMn高熵合金。结果表明,采用机械合金化得到纳米晶合金粉末,粉末相结构由面心立方结构(FCC)相以及少量的体心立方结构(BCC)相和非晶相组成。热压烧结后,合金中BCC相基本消失,同时伴随着σ相和M23C6相的析出;烧结温度的升高导致析出相颗粒明显长大。随着热压烧结温度从700℃升高到1000℃,合金塑性应变从4.4%增加到38.2%,而屈服强度从1682 MPa下降到774 MPa。经800℃和900℃烧结1 h的FeCoCrNiMn高熵合金具有较好的综合力学性能。  相似文献   

18.
采用原位热压工艺制备了高纯Ti_3Si_0.6Al_0.6C_1.98陶瓷,并测试了性能.以单质的Ti、Si、Al和石墨粉为原料,摩尔比Ti:Si:Al:C=3:0.6:0.6:1.98,在1500 ℃,30 MPa压力下保温1 h,高纯Ar气保护,制备试样的主要物相为Ti_3Si_0.6Al_0.6C_1.98.制备的Ti_3Si_0.6Al_0.6C_1.98陶瓷的密度为(4.43±0.23) g/cm~3,电阻率为(0.31±0.01)μΩ·m,抗弯强度为(245.46±22.04) MPa,维氏硬度为(2.91±0.32) GPa, 断裂韧性为(5.63±0.39) MPa·m~(1/2).Ti_3Si_0.6Al_0.6C_1.98陶瓷中晶粒以板状晶为主,晶粒层状结构明显,断口形貌显示主要为穿晶断裂,晶粒的分层断裂、微裂纹的偏转桥接及滑移使材料具有独特的压痕特征.  相似文献   

19.
建立三维有限元模型,并通过50%压下量的轧制试验验证模型的准确性。从时间角度分析整个波纹轧制过程中金属的流动规律。金属经历的变形可以分为两个阶段:填充阶段和压下阶段。填充阶段应力变化较为复杂,而压下阶段应力变化趋势一致。通过罗德参数和应力三轴度分析特征位置的应力状态,在开始变形时为两向拉应力一向压应力。采用EBSD技术分析Cu板的显微组织演变过程。与原始板材相比,铜板各特征位置晶粒均发生细化,而Cu板波谷处晶粒在发生细化后有长大的现象,这是由剧烈塑性变形产生的绝热温升现象造成的。  相似文献   

20.
采用球磨制得的Ag(Invar)复合粉体制备Cu/Ag(Invar)复合材料。研究烧结及形变热处理后复合材料的显微组织结构与性能。结果表明,在球磨过程中,微锻造焊合与加工硬化断裂共同作用导致Ag(Invar)粉体的平均颗粒尺寸先急剧增大,再快速降低,最后趋于稳定。相对于Cu/Invar复合材料,Cu/Ag(Invar)复合材料的烧结性能大大提高,其中的气孔小而少。形变热处理后,该复合材料近乎完全致密,具有最佳的相成分与元素分布,更重要的是,该复合材料中的Cu及Invar合金均呈三维网络状连续分布。Cu/Invar界面扩散被Ag阻挡层有效抑制,使Cu/Ag(Invar)复合材料的力学及热学性能均有明显提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号