首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
结合共沉淀法和高温固相法合成了一系列La掺杂的层状氧化物正极材料LiNi_(0.8-x)Co_(0.1)Mn_(0.1)La_xO_2(x=0,0.01,0.03),研究La对LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2材料的影响。通过XRD数据观察到了La_2Li_(0.5)Co_(0.5)O_4 相的生成,通过Rietveld精修软件计算了第二相的含量。电化学性能测试结果表明La掺杂之后材料的循环稳定性从74.3%上升到95.2%,而首次比容量从202 mA·h/g降低到了192 mA·h/g,循环稳定性的提高可以归因于新相的产生一方面消耗了材料中的杂质,另一方面粘附在颗粒表面保护材料不受电解液的腐蚀。CV测试结果表明与未掺杂的材料相比,掺杂后的样品电化学可逆性更好。  相似文献   

2.
采用电化学-量热法研究以LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2为正极材料的锂离子电池在不同环境温度和充放电倍率下的热电化学性能。结果表明:环境温度和充放电倍率是影响电池比容量的重要因素,随着充放电倍率和环境温度的增加,电池比容量逐渐减小。在低倍率(0.2C)下,电池充放电初始阶段的热流缓慢增大,且出现多个放热峰;而在较高倍率(0.5、1.0、2.0C)下,电池充放电初始阶段的热流快速增长,且充电和放电过程分别仅出现一个明显的放热峰。通过热电化学研究,可获得电池充放电过程的产热量、化学反应焓变(ΔrH_m)以及化学反应熵变(ΔrS_m)等热力学参数。  相似文献   

3.
通过直接热处理以及补充锂元素二次烧结的方法对锂离子电池三元镍钴锰废料进行回收,并将其重新作为锂离子电池正极材料进行应用。采用扫描电镜、红外光谱、热重、电感耦合等离子体以及电化学测试等方法对材料性能进行检测。结果表明:温度高于700℃时可以有效去除报废材料中的PVDF,高温烧结可以一定程度上修复材料容量,而通过补充锂元素进行二次烧结的方法可以有效恢复废料性能,具有商业应用价值。此方法工艺简单,可以为锂离子电池正极层状材料的回收提供参考。  相似文献   

4.
通过共沉淀法在体积为1L的简易烧杯中合成具有球形形貌的层状前驱体Ni_(0.8)Co_(0.1)Mn_(0.1)(OH)_2。探讨合成过程中影响因素,包括络合剂用量、搅拌速度和反应温度对产物形貌和性能的影响。通过高温烧结前驱体合成LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2材料。用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对材料的形貌和晶体结构进行表征,通过充放电测试、交流阻抗和循环伏安法研究材料的电化学性能。在2.8-4.3V电压范围内,合成的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2在0.1C和1C倍率下的首次放电容量分别为199和170 mA·h/g。在1C下循环80次后,其容量保持率为92%,表明这是一种具有良好应用前景的锂离子电池正极材料。  相似文献   

5.
将前驱体Ni0.5Co0.2Mn0.3(OH)2以及前驱体和碳酸锂的混合物分别进行热处理,初步探讨其在高温热处理过程中的结构变化以及热处理方式对材料电化学性能的影响。采用X射线衍射(XRD)、热重-差热分析(TG-DSC)、扫描电镜(SEM)以及恒流充放电测试技术对合成材料物理性能和电化学进行测试和表征。结果表明:前驱体在热处理过程中,其结构经历由Me(OH)2→NiCoOOH→Mn(Ni,Co)2O4的转变过程;而前驱体与碳酸锂的混合物则经历由两相混合物→三元材料+Li2CO3→三元材料的结构转变过程;相比于单一高温平台热处理而言,采用低高温双平台热处理所合成的材料可有效降低阳离子混排,使其具有更好的电化学性能。电化学测试结果表明:在3.0~4.4V电压范围内,其在25℃、0.5C下首次放电比容量为160.5 mA·h/g,60次循环后,容量保持率达98.9%。  相似文献   

6.
锂离子电池正极材料LiNi_(0.5)Co_(0.5)O_2制备与电化学性能   总被引:1,自引:1,他引:0  
采用球磨湿混和旋转合成相结合的新工艺制备了锂离子电池正极材料 L i Ni0 .5Co0 .5O2 ,并对材料进行了粒度、化学成分以及电化学性能测试。球磨湿混工艺能将原料混合均匀 ,并能有效地使粒度细化。旋转合成工艺能使混合料在均匀的温度场中进行反应 ,并使反应产物粒度均匀和成分均匀。制备的 L i Ni0 .5Co0 .5O2 为单一的 α- Na Fe O2 层状结构 ,粉末粒度分布范围窄 ,平均粒径约为 8μm~ 10μm。电化学性能测试结果表明 ,在 0 .2 m A/cm2 充放电流密度和 3 .0 V~ 4 .2 V电压范围内 ,首次充电容量为 173 m Ah/g,放电容量为 14 8m Ah/g。循环次数达 3 0次时 ,放电容量还有 12 9m Ah/g,循环稳定性良好。球磨湿混和旋转合成相结合的固相合成新工艺能制备出电化学性能良好的L i Ni0 .5Co0 .5O2 正极材料。  相似文献   

7.
锂离子电池正极材料LiNi_(0.5)Co_(0.5)O_2制备与电化学性能   总被引:3,自引:0,他引:3  
采用球磨湿混和旋转合成相结合的新工艺制备了锂离子电池正极材料LiNi0.5Co0.5O2,并对材料进行了粒度、化学成分以及电化学性能测试。球磨湿混工艺能将原料混合均匀,并能有效地使粒度细化。旋转合成工艺能使混合料在均匀的温度场中进行反应,并使反应产物粒度均匀和成分均匀。制备的LiNi0.5Co0.5O2为单一的α-NaFeO2层状结构,粉末粒度分布范围窄,平均粒径约为8μm-10μm。电化学性能测试结果表明,在0.2mA/cm^2充放电流密度和3.0V-4.2V电压范围内,首次充电容量为173mAh/g,放电容量为148mAh/g。循环次数达30次时, 放电容量还有129mAh/g,循环稳定性良好。球磨湿混和旋转合成相结合的固相合成新工艺能制备出电化学性能良好的LiNi0.5Co0.5O2正极材料。  相似文献   

8.
采用低温燃烧法合成了锂离子电池正极材料LiNi0.5Mn0.5-xCrxO2(x=0,0.01,0.02,0.05,0.1),研究了Cr取代部分Mn对其结构和电化学性能的影响。充放电测试结果表明:Cr取代部分Mn对正极材料LiNi0.5Mn0.5-xCrxO2的电化学性能有重要的影响,用适量的Cr取代Mn(x=0.02)能够提高正极材料的放电比容量和循环稳定性。X射线衍射(XRD)分析和循环伏安(CV)测试显示,Cr对Mn的适量取代能抑制正极材料中的阳离子混排,降低电极材料的极化,改善其可逆性能。LiNi0.5Mn0.48Cr0.02O2在2.5~4.6 V之间以0.1 C速率充放电,首次放电容量为179.9 mAh/g,第50次循环放电容量仍保有171.0 mAh/g,容量保持率达到95.1%  相似文献   

9.
通过共沉淀法合成了层状LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,并用柠檬酸包覆在LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/C表面制备出一系列的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/C复合材料。利用扫描电镜(SEM),透射电镜(TEM),X射线衍射(XRD)对未包覆样品和复合材料进行表征,采用恒流充放电和交流阻抗技术对其电化学性能进行测试。XRD分析结果表明,碳包覆没有改变LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/C的晶形结构;C包覆量为5%(质量分数)的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2样品展现出优良的电化学性能,在2.8~4.6V电压范围内,0.1C倍率充放电条件下,其首次放电比容量为174.2mAh·g-1,远高于未包覆样品的156.7mAh·g-1。  相似文献   

10.
以氧化钇溶胶为包覆前驱物,利用氧化钇和正极材料表面带电状态不同制备氧化钇包覆LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2。采用X射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)及电化学测试等手段对LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2包覆前后的物相结构、表面形貌及电化学性能进行研究。结果表明:氧化钇包覆并未影响LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2的晶体结构,氧化钇以颗粒状分布在正极材料表面,氧化钇包覆层厚度在15~25nm,氧化钇在正极材料表面分布比较均匀。与未包覆LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2相比,氧化钇包覆后,材料在高电压下的循环稳定性有所提高,最佳包覆量为0.4%。氧化钇包覆有效降低材料在充放电过程中的极化和电荷转移电阻。  相似文献   

11.
将Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2前驱体、碳酸锂与H_3BO_3按一定配比高效混合,采用固相烧结法制备高压实密度LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2粉体正极材料,探讨H_3BO_3添加量对正极材料物理性能、极片压实密度及电化学性能的影响。使用X射线衍射(XRD)和扫描电镜(SEM)表征材料的物理性能,将正极材料制作成软包装全电池,并对其电化学性能进行测试。结果表明:H_3BO_3具有助熔作用;能增加一次粉体正极材料颗粒的粒径,并提高颗粒致密度,对正极材料的晶体结构没有影响,但对正极材料粒径、pH、比表面积及振实密度等产生影响。将H_3BO_3添加量为0.6%(质量分数)时制备的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料制成正极片后,其极限压实密度最高达到3.9 g/cm~3;与采用常规LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料制成的正极片(压实密度≤3.5 g/cm~3)相比,其体积能量密度提高约11.4%;0.5C首次放电比容量为153.64(mA·h)/g,1C循环首次放电比容量为152.22(mA.h)/g,100次循环容量保持率为96.99%,其综合电化学性能优于常规LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的。  相似文献   

12.
采用共沉淀法在连续搅拌反应器系统(CSTR)工艺体系中批量合成出镍钴锰三元氢氧化物前驱体Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_2(622),掺加适量的Li_2CO_3高温焙烧后得到锂离子二次电池正极材料Li[Ni_(0.6)Co_(0.2)Mn_(0.2)]O_2。使用扫描电子显微镜(SEM)观察样品形貌,X射线衍射仪(XRD)及透射电子显微镜(TEM)分析合成样品的具体结构,利用充放电循环测试系统测试其电化学性能。结果表明,产物为二次粒子团聚而成近似球形颗粒;合成的样品具有典型的层状α-NaFeO_2结构。在电压范围为2.8~4.3 V,1 C倍率条件下,首次充放电容量分别为206和176 mAh·g~(-1),100次循环后库伦效率达到了85%。  相似文献   

13.
采用简单固相法制备LiNi_(0.5)Mn_(1.5)O_4及Na~+掺杂的Li_(0.95)Na_(0.05)Ni_(0.5)Mn_(1.5)O_4正极材料,研究Na~+掺杂对LiNi_(0.5)Mn_(1.5)O_4材料晶体结构和电化学性能的影响。分别采用XRD、SEM、FT-IR、CV、EIS和恒流充放电测试对样品进行表征。结果表明,未掺杂和Na~+掺杂样品均为由八面体一次颗粒组成的二次团聚体颗粒,Na~+掺杂在一定程度上减小了一次颗粒尺寸。Na~+掺杂可有效抑制Li_xNi_(1-x)O杂相的生成,提高Ni/Mn无序度,降低电荷转移阻抗,加快锂离子扩散,从而提高材料的倍率性能。但是,掺杂的Na~+倾向占据锂离子的8a位置,从而迫使相同数量的锂离子占据16d八面体位置,这使尖晶石结构变得不稳定,因此,Na~+掺杂并没有改善Li Ni_(0.5)Mn_(1.5)O_4材料的循环稳定性。  相似文献   

14.
为了确定具有固定比例的富锂锰基(Mn:Ni:Co=0.6:0.2:0.2)正极材料中的最优锂含量,制备了Li_(1+x)(Mn_(0.6)Ni_(0.2)Co_(0.2))_(1-x)O_2(x=0,0.1,0.2,0.3)复合物正极材料。XRD测试表明,富锂锰基复合材料具有典型的空间R3m和C2/m层状复合结构。SEM观察表明,颗粒粒度在0.4~1.1之间,并且粒度随锂含量的增加而增大。Li_(1.2)(Mn_(0.6)-Ni_(0.2)Co_(0.2))_(0.8)O_2具有较好的首次放电容量,在电流密度为20 mA/g,电压为2.0~4.8 V下,其首次放电容量为275.7 mA·h/g。然而Li_(1.1)(Mn_(0.6)Ni_(0.2)Co_(0.2))_(0.9)O_2表现出较好的循环性能,在0.2C、50次循环后,容量保持率为93.8%,在反应动力学中具有较好的锂离子脱嵌能力。  相似文献   

15.
通过丝网印刷方法,在由LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2、导电添加剂和聚偏氟乙烯制成的电极表面涂覆了一层薄薄的氧化石墨烯。在充电截止电压为4.3 V的条件下进行了循环性能和倍率性能测试。结果表明:未改性电极在恒电流充放电测试中容量下降且极化增加,而包覆改性后电极的容量衰减程度和极化增加速度降低。这是由于氧化石墨烯涂层抑制了LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2电极和电解质之间的部分副反应,使得改性电极的循环稳定性和倍率性能显著提高,为提升LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2电极性能提供了一种环境友好且非常有效的方法。  相似文献   

16.
高振实密度球形LiNi_(0.5)Co_(0.3)Mn_(0.2)O_2粉末的合成及性能   总被引:1,自引:0,他引:1  
以共沉淀法制备的球形Ni_(0.5)Co_(0.3)Mn_(0.2)CO_3粉末为前驱体,按一定的比例将碳酸锂与前驱体混合,然后采用高温固相法合成高振实密度球形LiNi_(0.5)Co_(0.3)Mn_(0.2)O_2正极材料.该材料的振实密度达到2.60 g/cm~3,与商品化LiCoO_2的密度相当.SEM分析表明, LiNi_(0.5)Co_(0.3)Mn_(0.2)O_2正极材料与前驱体形貌有良好的继承性,均为理想的球形.XRD物相分析表明,在不同合成温度下的Li Ni_(0.5)Co_(0.3) Mn_(0.2)O_2产物均为具有α-NaFeO_2层状结构的纯相物质,在较高合成温度下所得材料的结晶度较高.电化学性能研究表明,在2.7~4.3 V的电压范围内,电池的放电比容量在0.2C倍率下为168.1 mA-h/g,在1C倍率下为157.6 mA-h/g;经50次循环后,两种放电条件下的电池容量保持率分别为95.1%和97.2%,显示出良好的电化学性能.  相似文献   

17.
采用过渡金属醋酸盐在不同合成条件下制备LiNi0.8Co0.1Mn0.1O2正极材料。使用同步热重–差热–微分热重分析法研究过渡金属醋酸盐混合物。利用X射线粉末衍射和充放电测试对所制备的LiNi0.8Co0.1Mn0.1O2材料进行表征。过渡金属醋酸盐混合物在加热过程中经历脱水和分解。所有测试的LiNi0.8Co0.1Mn0.1O2样品均为层状结构,且具有R3m空间群。采用不同锂源和不同合成工艺制备的LiNi0.8Co0.1Mn0.1O2样品表现出的充放电性能差别很大。采用550°C预处理碳酸锂和过渡金属醋酸盐后在800°C烧结获得的样品在0.2C倍率下前20次充放电循环过程中的最高容量为200.8 m A·h/g,平均容量为188.1 m A·h/g。  相似文献   

18.
在采用低温共沉淀-水热-煅烧法合成锂离子电池Fe-Ni-Mn体系正极材料Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的基础上,对合成的材料Li1.6(Fe0.2Ni0.2Mn0.6)O2.6进行V2O5的包覆改性研究,以提高材料Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的首次放电比容量和循环性能。用XRD、SEM、TEM、ICP光谱和恒流充放电测试研究包覆材料的结构和电化学性能。结果表明,V2O5包覆并没有改变材料的晶体结构,只存在于材料的表面,与未包覆的材料相比,V2O5包覆后的材料具有更好的首次放电容量和容量保持率。50周循环后,添加质量分数3%V2O5样品Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的放电比容量可以维持在200.3 mAh/g,大于未添加V2O5样品Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的194.0 mAh/g。CV测试表明,包覆层的存在有效抑制了材料层状结构的转变及电极与电解液的负反应。  相似文献   

19.
采用氢氧化物共沉淀法合成前驱体Ni_(0.5)Co_(0.2)Mn_(0.3)O_2,进一步用高温固相法与锂源共混煅烧得到LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2。通过TGA、XRD、SEM、电化学测试等初步探讨了前驱体与锂源在高温煅烧过程中的反应机理及不同煅烧温度对材料结构和性能的影响。结果表明:前驱体与锂源的融合反应发生在750℃之前,继续升高温度是晶体的不断完善过程,材料质量几乎没有变化;对750~900℃煅烧的材料进行结构分析表明,所有材料均具有良好的α-NaFeO_2层状结构和较小的阳离子混排度,850℃煅烧的材料晶体生长和表面结构最完美,其在0.2 C,2.5~4.6 V的充放电测试条件下,具有最高的首次放电容量193.7mAh/g,循环30次后的容量保持率为94.2%,并且具有最好的倍率性能。  相似文献   

20.
以废旧LiCoO_2电池为原料,通过预处理、酸浸、共沉淀步骤,实现了LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2正极材料的再生。ICP-OES分析浸出液中的元素含量,SEM和XRD表征材料形貌和结构,扣式电池的电化学测试定量分析材料的电化学性能。研究表明,利用浸出液可以再生与空白形貌相似和层状结构良好的正极材料(R-NCM),(R-NCM)在0.2C、2.8~4.3V电压范围内进行充放电循环测试,首周放电比容量可达到210.8mAh/g,经过50周充放电循环后放电比容量仍有183 mAh/g,容量保持率为87%,表现出良好的循环稳定性,为废旧锂离子电池的再生提供支撑并指出发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号