首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
将豆粕加入木瓜蛋白酶和酵母菌在40℃条件下进行液态酶解发酵处理24h制备液态酶解发酵豆粕并进行营养成分分析。72头体质量(31.25±0.22)kg健康阉公猪,随机分为3组,每组4个重复,每个重复6头猪,分别为对照料、添加10%液态酶解发酵豆粕和添加20%液态酶解发酵豆粕组,预饲期7d,正试期28d。结果表明,豆粕经过液态酶解发酵后粗蛋白含量有所提高,但是差异不显著(P〉0.05),钙和磷的含量均没有显著变化(P〉0.05),水溶性蛋白、小肽、小分子蛋白含量显著提高(P〈0.05),大分子蛋白含量显著降低(P〈0.05),脲酶活性显著降低(P〈0.05)。饲养试验表明,添加10%液态酶解发酵豆粕和20%液态酶解发酵豆粕的试验组和对照组相比平均日采食量分别提高了12.14%和20.81%(P〈0.05),平均日增重分别提高了11.33%和22.29%(P〈0.05);粪中氮的排泄量分别降低了11.11%和8.80%(P〈0.05);粪中磷的排泄量分别降低了3.59%(P〉0.05)和23.95%(P〈0.05),粪中铜的排泄量分别降低了2.22%(P〉0.05)和7.52%(P〉0.05),粪中锌的排泄量3个组之间均没有显著性差异(P〉0.05)。综上,豆粕经木瓜蛋白酶和酵母菌酶解发酵后蛋白质成分有所改善,饲喂生长育肥猪可以提高生产性能,降低粪中部分营养物质的排泄量。  相似文献   

2.
米曲霉发酵豆粕营养特性的研究   总被引:2,自引:0,他引:2  
通过米曲霉对豆粕进行发酵,对发酵后豆粕的常规营养组成,粗蛋白质的组成、蛋白质的营养特性进行了分析,并将分析结果校正至发酵前的底物含量,探讨微生物发酵对豆粕中各营养组分的改造程度。结果表明:经检测,与未发酵豆粕相比,发酵豆粕中粗蛋白含量无显著变化,但其组成发生了改变,真蛋白质降低了19.19%(P<0.05),生成了2.02%的微生物蛋白,非蛋白氮水平增加了369.08%(P<0.05);发酵豆粕中大分子蛋白(>60 ku)和中分子蛋白(30~60 ku)被降解为小分子蛋白(<30 ku),有效消除了大豆抗原和抗营养因子。同时,发酵使豆粕中NDF、ADF和NFE的含量分别显著降低了16.77%(P<0.05)、12.57%(P<0.05)、22.25%(P<0.05),粗脂肪含量增加了179.25%;但豆粕发酵后底物重量、蛋白质和总能分别损失了5.14%、3.06%和3.86%。这表明米曲霉发酵过程中以损耗一部分碳水化合物和蛋白质作为代价,使豆粕本身蛋白质发生了一定程度的分解,从而获得了一种饲用特性更高的蛋白饲料。  相似文献   

3.
为了研究枯草芽孢杆菌(Bacillus subtilis)XZ35株固态发酵豆粕的效果,试验以纯化水和市售枯草芽孢杆菌B1株为对照,在最优工艺条件下固态发酵豆粕,对发酵产品进行大豆抗原蛋白残留率、三氯乙酸可溶性氮(TCA-NSI)、粗蛋白、水分和挥发性盐基氮含量测定。结果表明:枯草芽孢杆菌XZ35株发酵豆粕后抗原蛋白残留率为5.9%,显著低于空白对照组和枯草芽孢杆菌B1株对照组(P0.05);TCA-NSI含量为7.24%,显著高于空白对照组和枯草芽孢杆菌B1株对照组(P0.05);枯草芽孢杆菌XZ35株和B1株发酵豆粕后粗蛋白含量显著高于空白对照组(P0.05),各组水分含量差异不显著(P0.05);挥发性盐基氮含量为30.37 mg/100 g,显著低于空白对照组和枯草芽孢杆菌B1株对照组(P0.05)。说明枯草芽孢杆菌XZ35株在豆粕发酵过程中能够将豆粕中大分子蛋白降解为小分子多肽,同时具有较强的抗原蛋白降解能力,进而提高豆粕蛋白质的消化率和利用率,提高豆粕在饲料中的应用范围和使用价值。  相似文献   

4.
本试验旨在研究发酵豆粕对生长猪生长性能、血清生化指标和抗氧化性能的影响。将发酵豆粕饲喂初始体重为(30.55±0.52)kg的生长猪,试验分为6组,每组5个重复,每个重复10头猪,各组添加水平分别为0(对照组)、2%、4%、6%和8%,试验周期为5周。结果表明:与对照组相比,生长猪日粮中添加6%的发酵豆粕极显著提高生长猪平均日增重(P0.01),显著提高期末重、平均日采食量(P0.05),显著降低料重比(P0.05);与对照组相比,添加6%发酵豆粕可显著降低血清葡萄糖、尿素氮、总胆固醇含量(P0.05),显著增加血清总蛋白含量,碱性磷酸酶活性(P0.05);与对照组相比,生长猪日粮中添加6%发酵豆粕可显著提高血清GSH-Px活性,血清ASA(P0.05),极显著提高血清T-AOC(P0.01),显著降低血清MDA含量(P0.05)。综上所述,生长猪日粮中添加6%的发酵豆粕可显著改善其生长性能、血清生化指标和抗氧化性能。  相似文献   

5.
利用枯草芽孢杆菌1.0892和米曲霉2.0951混合发酵豆粕,在优化发酵底物组成和发酵条件后,对发酵前后豆粕中各种营养成分进行对比,结果表明:发酵后豆粕中大豆多肽、粗蛋白、粗脂肪、钙和磷含量显著提高(P0.05),真蛋白、粗纤维和粗灰分含量显著降低(P0.05);发酵后豆粕中胰蛋白酶抑制因子显著减少(P0.05),并且还富含各种活性酶。  相似文献   

6.
本试验探讨了在日粮中使用发酵蛋白原料替代普通蛋白原料对生长育肥猪抗氧化能力和免疫能力的影响。结果表明,饲料日粮中添加发酵豆粕、发酵棉粕显著提高了育肥猪血清谷胱甘肽过氧化物歧化酶活性(GSH-Px)和总抗氧化能力(T-AOC)(P<0.05),显著降低了育肥猪血清丙二醛含量(MDA)(P<0.05);显著提高了育肥猪血清IgA含量和IgM含量(P<0.05),极显著提高育肥猪血清IgG含量(P<0.01)。育肥猪采食添加发酵豆粕、发酵棉粕的饲料日粮后,机体抗氧化能力增强,并能刺激机体的体液免疫反应,从而提高猪的抗病能力。  相似文献   

7.
本试验以小肽含量为指标,对解淀粉芽孢杆菌单菌固态发酵豆粕以及解淀粉芽孢杆菌、植物乳杆菌和酿酒酵母菌3个菌种混菌固态发酵豆粕的工艺条件进行优化,并对其发酵前后的营养物质含量变化进行研究。通过解淀粉芽孢杆菌、植物乳杆菌和酿酒酵母3个试验菌的生长曲线确定其接种到固态培养基的最佳接种时间。采用单因素试验设计研究解淀粉芽孢杆菌接种量、温度、料水比、发酵时间4个因素对豆粕发酵产小肽的影响,并在此基础上采用四因素三水平的正交试验设计对单、混菌固态发酵豆粕的工艺条件进行优化。对豆粕发酵前后豆粕营养物质含量、大豆球蛋白含量、蛋白质分子质量、发酵产物p H进行测定。结果显示:3株试验菌接在各自种子培养基扩大培养至21 h为其接种到固态培养基的最佳时间。解淀粉芽孢杆菌单菌固态发酵豆粕的最佳工艺条件为:接种量为10%、温度为40℃、料水比为1.0∶1.2、发酵时间为72 h;解淀粉芽孢杆菌、植物乳杆菌、酿酒酵母混菌固态发酵豆粕的最佳工艺条件为:接种量为15%、温度为31℃、料水比为1.0∶1.0发酵时间为120 h,3个菌株的接种比例为:解淀粉芽孢杆菌∶植物乳杆菌∶酿酒酵母=9∶3∶2。经微生物发酵后,发酵产物中小肽、粗蛋白质、粗灰分、粗脂肪含量较发酵前均得到显著提高(P<0.05),粗纤维含量则显著下降(P<0.05);单菌发酵组和混菌发酵组发酵产物中大豆球蛋白含量均较未发酵组显著降低(P<0.05);单菌发酵组和混菌发酵组发酵产物中蛋白质分子质量较未发酵组降低;混菌发酵组发酵产物的p H较未发酵组显著降低(P<0.05),而单菌发酵组发酵产物的p H则与未发酵组差异不显著(P>0.05)。综上所述,豆粕经微生物固态发酵后营养价值在一定程度上得到改善,大分子蛋白质被降解,p H也发生了变化,并且单菌发酵和混菌发酵的效果存在差异。  相似文献   

8.
固态发酵对复合蛋白质饲料营养价值改善效果的研究   总被引:7,自引:1,他引:6  
本文旨在研究同态发酵对复合蛋白质饲料(CPF)营养成分和养分利用效率的改善效果.将产朊假丝酵母、枯草芽孢杆菌和乳酸杆菌接种到CPF后发酵3 d,干燥制得发酵复合蛋白质饲料(FCPF).在测定豆粕(SBM)、CPF、FCPF常规养分和氨基酸含量基础上进行消化代谢试验.选择体重为(24.36±1.78)kg的杜×长×大生长猪24头,随机分为4组,每组6个重复,每个重复1头猪,分别饲喂无氮日粮和以SBM、CPF及FCPF作为唯一蛋白质源配制的半纯合日粮,采用无氮日粮法测定SBM、CPF和FCPF对生长猪的蛋白质、能量消化利用率以及氨基酸回肠消化率.预试期4 d,正试期4 d.结果表明:固态发酵极显著提高了FCPF的粗蛋白质、真蛋白质、钙和总磷含量(P<0.01);除精氨酸外,氨基酸含量均有所提高.与CPF相比,FCPF蛋白质消化利用率和能量消化率均极显著升高(P<0.01);氨基酸表观消化率显著或极显著的升高(P<0.05或P<0.01);除Gly以外,FCPF各氨基酸真消化率均显著或极显著的升高(P<0.05或P<0.01).FCPF大部分营养特性接近或优于SBM.由此可知,固态发酵可改善CPF的营养特性,提高其在20~50 kg生长猪上的养分消化利用率.  相似文献   

9.
本试验以小肽含量为指标,对解淀粉芽孢杆菌单菌固态发酵豆粕以及解淀粉芽孢杆菌、植物乳杆菌和酿酒酵母菌3个菌种混菌固态发酵豆粕的工艺条件进行优化,并对其发酵前后的营养物质含量变化进行研究。通过解淀粉芽孢杆菌、植物乳杆菌和酿酒酵母3个试验菌的生长曲线确定其接种到固态培养基的最佳接种时间。采用单因素试验设计研究解淀粉芽孢杆菌接种量、温度、料水比、发酵时间4个因素对豆粕发酵产小肽的影响,并在此基础上采用四因素三水平的正交试验设计对单、混菌固态发酵豆粕的工艺条件进行优化。对豆粕发酵前后豆粕营养物质含量、大豆球蛋白含量、蛋白质分子质量、发酵产物p H进行测定。结果显示:3株试验菌接在各自种子培养基扩大培养至21 h为其接种到固态培养基的最佳时间。解淀粉芽孢杆菌单菌固态发酵豆粕的最佳工艺条件为:接种量为10%、温度为40℃、料水比为1.0∶1.2、发酵时间为72 h;解淀粉芽孢杆菌、植物乳杆菌、酿酒酵母混菌固态发酵豆粕的最佳工艺条件为:接种量为15%、温度为31℃、料水比为1.0∶1.0发酵时间为120 h,3个菌株的接种比例为:解淀粉芽孢杆菌∶植物乳杆菌∶酿酒酵母=9∶3∶2。经微生物发酵后,发酵产物中小肽、粗蛋白质、粗灰分、粗脂肪含量较发酵前均得到显著提高(P0.05),粗纤维含量则显著下降(P0.05);单菌发酵组和混菌发酵组发酵产物中大豆球蛋白含量均较未发酵组显著降低(P0.05);单菌发酵组和混菌发酵组发酵产物中蛋白质分子质量较未发酵组降低;混菌发酵组发酵产物的p H较未发酵组显著降低(P0.05),而单菌发酵组发酵产物的p H则与未发酵组差异不显著(P0.05)。综上所述,豆粕经微生物固态发酵后营养价值在一定程度上得到改善,大分子蛋白质被降解,p H也发生了变化,并且单菌发酵和混菌发酵的效果存在差异。  相似文献   

10.
本试验旨在评价补充微囊氨基酸条件下鱼粉蛋白和发酵酶解豆粕蛋白不同配比对日本沼虾生长和免疫性能的影响。试验配制5组等氮等能饲料,以发酵酶解豆粕分别替代饲料中0(FM组)、25%(R25组)、50%(R50组)、75%(R75组)以及100%的鱼粉(R100组)(鱼粉蛋白与发酵酶解豆粕蛋白配比分别为1∶0、3∶1、1∶1、1∶3和0∶1),对平均体重为(0.103 0±0.000 2)g的日本沼虾进行8周的饲养试验,随后对各组虾进行嗜水气单胞菌感染试验。每组设5个重复,每个重复50尾虾。结果表明:当鱼粉蛋白与发酵酶解豆粕蛋白配比为1∶1时,日本沼虾的增重率达到最大,显著高于FM和R100组(P0.05),各组日本沼虾的存活率无显著差异(P0.05);各组日本沼虾的肝胰腺超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)活力及丙二醛(MDA)含量无显著差异(P0.05);FM组日本沼虾的血细胞总数及血淋巴吞噬活性均显著高于R100组(P0.05);肝胰腺中热应激同源蛋白70和热应激蛋白90的mRNA相对表达水平分别在FM和R25组达到最高,显著高于其余各组(P0.05);当发酵酶解豆粕替代鱼粉比例超过50%时,嗜水气单胞菌感染后日本沼虾的累计死亡率显著增加(P0.05)。由此可见,发酵酶解豆粕可作为日本沼虾饲料中较好的蛋白质源,在氨基酸平衡条件下鱼粉蛋白和发酵酶解豆粕蛋白的最佳配比为1∶1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号