首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lately, the price of liquid formulated lipase enzymes, usable in biodiesel production, has been significantly reduced. This enables one-time use of these enzymes for transesterification, and the process is used industrially. However, the process suffers a drawback by leaving 2−3 % free fatty acids in the crude biodiesel, which reduces the profitability. This article discusses a novel enzymatic FFA esterification reaction utilizing liquid lipase B from Candida antarctica (CALB) along with glycerol at low water concentrations to eliminate the residual FFA. The reaction setup was found able to reduce the free fatty acid concentration to within biodiesel specifications of < 0.25 wt.% FFA. Additionally, two alternative process setups are proposed, which were both found viable through a combination of experiments and simulations, and can be developed into full-scale processes. The resulting two-step enzymatic biodiesel process - transesterification followed by esterification - provides a potential process layout for the industrial production of biodiesel.  相似文献   

2.
Xie W  Yang D 《Bioresource technology》2011,102(20):9818-9822
The transesterification of soybean oil with methanol was carried out, to produce biodiesel, over silica-bonded N-propyl sulfamic acid in a heterogeneous manner. Results showed that a maximum conversion of 90.5% was achieved using a 1:20 M ratio of soybean oil to methanol and a catalyst amount of 7.5 wt.% at 423 K for 60 h. It was found that the free fatty acid (FFA) and water present in the feedstock had no significant influence on the catalytic activity to the transesterification reaction. Besides, the catalyst also showed activities towards the esterification reaction of FFAs, in terms of the FFA conversion of 95.6% at 423 K for 30 h. Furthermore, the catalyst could be recovered with a better reusability.  相似文献   

3.
The effect of microwave irradiation on the simultaneous extraction and transesterification (in situ transesterification) of dry algal biomass to biodiesel was investigated. A high degree of oil/lipid extraction from dry algal biomass and an efficient conversion of the oils/lipids to biodiesel were demonstrated in a set of well-designed experimental runs. A response surface methodology (RSM) was used to analyze the influence of the process variables (dry algae to methanol (wt/vol) ratio, catalyst concentration, and reaction time) on the fatty acid methyl ester conversion. Based on the experimental results and RSM analysis, the optimal conditions for this process were determined as: dry algae to methanol (wt/vol) ratio of around 1:12, catalyst concentration about 2 wt.%, and reaction time of 4 min. The algal biodiesel samples were analyzed with GC-MS and thin layer chromatography (TLC) methods. Transmission electron microscopy (TEM) images of the algal biomass samples before and after the extraction/transesterification reaction are also presented.  相似文献   

4.
目前生物柴油因其环保和可再生利用资源的特性备受关注。多数生物柴油是通过甲醇和碱催化食用油得到的,而大量非食用油也可以制备生物柴油。本文报道用高含游离酸脂肪油快速高效低成本制备成其单酯的二步法工艺。先用1% H2SO4以少于1.5%量对甲醇和云南特产香果树(Lindera communis)籽的粗原料油以10∶1摩尔比组成的混合液酸催化酯化游离脂肪酸;之后再对醇和得到的油脂产品按摩尔比15∶1的混合液碱催化转化为单甲酯和甘油。本方法是一个直接甲脂化制备生物柴油的工艺简洁、降低成本的新技术。文中还讨论了该工艺影响转化效率的主要因素,如摩尔比,催化量,温度,反应时间和酸度。香果树生物柴油不重蒸,而其生物柴油的主要特性,如粘度、热值、比重、闪点、冷滤点等与生物柴油标准的匹配度,也做了报道,研究结果将为香果树生物柴油以非重蒸油料制备生物柴油产品,作为潜在的柴油燃料替代产品提供技术支撑。  相似文献   

5.
In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.  相似文献   

6.
Waste cooking oil (WCO) has attracted attention as a non-edible feedstock for biodiesel. Although an alkali catalyst has several advantages over an acid catalyst in biodiesel production, biodiesel conversion from WCO is only 5.2% when using an alkali catalyst (NaOH), owing to its high free fatty acid (FFA) content of 4.2%. In this study, a novel two-step process in a single reactor, comprised of re-esterification of the FFAs with crude glycerol, using a Tin (II) chloride (SnCl2) catalyst, and subsequent transesterification with methanol, using an alkali catalyst, was adopted, and each step was optimized. This study revealed that the FFA content after re-esterification should be approximately 1.5%, not only to save glycerol and the catalyst involved in the re-esterification, but also to achieve high biodiesel conversion during the transesterification. An alkaline catalyst was successfully used to produce biodiesel in the second step, and a 92.8% conversion to biodiesel was achieved under the optimized conditions (0.6% catalyst relative to WCO, 0.2mL-methanol/WCO, 70ºC, 3 h). Overall, this novel two-step process achieved highly enhanced biodiesel conversion (4.0% to 92.8%) with significantly reduced reaction time (12 h to 4 h) and methanol requirements (15 mL/g-WCO to 0.2 mL/g-WCO).  相似文献   

7.
The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6 h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182 °C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost.  相似文献   

8.
The present work examines the production of a biodiesel from a non-edible oil namely honne oil (Calophyllum inophyllum linn). A three stage process viz., pre-treatment, alkali catalyzed transesterification and post treatment adopted for the production is discussed. The reaction parameters such as methanol to oil molar ratio, catalyst concentration, temperature and time have been optimized for the production of biodiesel. The yield of biodiesel from the honne oil under the optimized conditions is found to be 89%.  相似文献   

9.
This study reports the conversion of Jatrophacurcas L. oil to biodiesel catalyzed by sulfated zirconia loaded on alumina catalyst using response surface methodology (RSM), specifically to study the effect of interaction between process variables on the yield of biodiesel. The transesterification process variables studied were reaction temperature, reaction duration, molar ratio of methanol to oil and catalyst loading. Results from this study revealed that individual as well as interaction between variables significantly affect the yield of biodiesel. With this information, it was found that 4h of reaction at 150°C, methanol to oil molar ratio of 9.88 mol/mol and 7.61 wt.% for catalyst loading gave an optimum biodiesel yield of 90.32 wt.%. The fuel properties of Jatropha biodiesel were characterized and it indeed met the specification for biodiesel according to ASTM D6751.  相似文献   

10.
Fatty acid methyl esters (FAME) were produced from palm oil using eggshell modified with magnesium and potassium nitrates to form a composite, low-cost heterogeneous catalyst for transesterification. The catalyst, prepared by the combination of impregnation/co-precipitation was calcined at 830 °C for 4 h. Transesterification was conducted at a constant temperature of 65 °C in a batch reactor. Design of experiment (DOE) was used to optimize the reaction parameters, and the conditions that gave highest yield of FAME (85.8%) was 5.35 wt.% catalyst loading at 4.5 h with 16:1 methanol/oil molar ratio. The results revealed that eggshell, a solid waste, can be utilized as low-cost catalyst after modification with magnesium and potassium nitrates for biodiesel production.  相似文献   

11.
In this study, a two-step process was developed to produce biodiesel from Calophyllum inophyllum oil. Pre-treatment with phosphoric acid modified β-zeolite in acid catalyzed esterification process preceded by transesterification which was done using conventional alkali catalyst potassium hydroxide (KOH). The objective of this study is to investigate the relationship between the reaction temperatures, reaction time and methanol to oil molar ratio in the pre-treatment step. Central Composite Design (CCD) and Response Surface Methodology (RSM) were utilized to determine the best operating condition for the pre-treatment step. Biodiesel produced by this process was tested for its fuel properties.  相似文献   

12.
Shi H  Bao Z 《Bioresource technology》2008,99(18):9025-9028
A new method which coupled the two-phase solvent extraction (TSE) with the synthesis of biodiesel was studied. Investigations were carried out on transesterification of methanol with oil-hexane solution coming from TSE process in the presence of sodium hydroxide as the catalyst. Biodiesel (fatty acid methyl esters) were the products of transesterification. The influential factors of transesterification, such as reaction time, catalyst concentration, mole ratio of methanol to oil and reaction temperature were optimized. The results showed that the optimal reaction parameters were sodium hydroxide concentration 1.1% by weight of rapeseed oil, mole ratio of methanol to oil 9:1, reaction time 120 min, and reaction temperature 55-60 degrees C. Under these conditions, the TG conversion would rise up to 98.2%. Based on the new method, biodiesel production process could be simplified and the biodiesel cost could be reduced.  相似文献   

13.
Biodiesel was produced using waste coffee grounds (WCGs) via a two-step process comprising lipid extraction and subsequent transesterification steps. Each step was statistically analyzed, and optimum conditions for each step were suggested. WCGs were found to have 16.4% lipid content with 1.9% free fatty acid (FFA) content. The liquid-solid ratio (LSR) significantly influenced lipid extraction from WCGs, while extraction time and temperature did not; 92.7% of lipid extraction efficiency was achieved at 13.7 mL-hexane/g-WCGs, 30 min of extraction time, and 25°C. Owing to the relatively low FFA content, an alkaline catalyst (NaOH) reaction was used that requires less amount of catalyst, methanol, and shorter reaction time compared to an acid catalyst reaction. Reaction time and temperature were the major factors affecting biodiesel conversion, and 94.0% of biodiesel conversion was obtained at optimum conditions for transesterification: 0.5% catalyst, 1.5 mL-methanol/g-lipid, 45°C, and 9 h of reaction time. With the use of statistical analysis tools, high lipid extraction efficiency and biodiesel conversion were achieved at relatively mild conditions, which would reduce biodiesel production cost substantially.  相似文献   

14.
Effects of residence time (3-12 min), stirrer speed (0-800 rpm), and NaOH concentration (0.25-1.0 wt% of oil) on the production performance of the designed 6-stage continuous reactor (2.272 l) for transesterification of palm oil were investigated at molar ratio of methanol to oil of 6:1 and temperature of 60 degrees C. Higher stirrer speed increased the reaction rate up to an appropriate speed but excessive stirrer speed decreased the reaction rate. Inappropriate stirrer speed runs dramatically decreased the production capacity of the reactor. Higher NaOH concentration significantly increased reaction rate and production capacity of the reactor. The reactor had a residence time distribution equivalent to 5.98 ideal CSTRs in series and a production performance equivalent to a plug flow reactor. At NaOH of 1.0 wt% of oil, the reactor could produce saleable biodiesel within residence time of 6 min in which a production capacity was 17.3 l/h and a power consumption of stirrer was 0.6 kW/m(3).  相似文献   

15.
In this paper, integration possibilities for production of biodiesel and bioethanol using a single source of biomass as a feedstock (oil palm) were explored through process simulation. The oil extracted from Fresh Fruit Bunches was considered as the feedstock for biodiesel production. An extractive reaction process is proposed for transesterification reaction using in situ produced ethanol, which is obtained from two types of lignocellulosic residues of palm industry (Empty Fruit Bunches and Palm Press Fiber). Several ways of integration were analyzed. The integration of material flows between ethanol and biodiesel production lines allowed a reduction in unit energy costs down to 3.4%, whereas the material and energy integration leaded to 39.8% decrease of those costs. The proposed integrated configuration is an important option when the technology for ethanol production from biomass reaches such a degree of maturity that its production costs be comparable with those of grain or cane ethanol.  相似文献   

16.
In this study, a novel continuous reactor has been developed to produce high quality methyl esters (biodiesel) from palm oil. A microporous TiO2/Al2O3 membrane was packed with potassium hydroxide catalyst supported on palm shell activated carbon. The central composite design (CCD) of response surface methodology (RSM) was employed to investigate the effects of reaction temperature, catalyst amount and cross flow circulation velocity on the production of biodiesel in the packed bed membrane reactor. The highest conversion of palm oil to biodiesel in the reactor was obtained at 70 °C employing 157.04 g catalyst per unit volume of the reactor and 0.21 cm/s cross flow circulation velocity. The physical and chemical properties of the produced biodiesel were determined and compared with the standard specifications. High quality palm oil biodiesel was produced by combination of heterogeneous alkali transesterification and separation processes in the packed bed membrane reactor.  相似文献   

17.
The potential of Mg(x)Co(2-)(x)O(2) as heterogeneous reusable catalyst in transesterification of palm oil to methyl ester was investigated. The catalyst was prepared via co-precipitation of the metal hydroxides at different Mg-Co ratios. Mg(1.7)Co(0.3)O(2) catalyst was more active than Mg(0.3)Co(1.7)O(2) in the transesterification of palm oil with methanol. The catalysts calcined at temperature 300 °C for 4 h resulted in highly active oxides and the highest transesterification of 90% was achieved at methanol/oil molar ratio of 9:1, catalyst loading of 5.00 wt.%, reaction temperature of 150 °C and reaction time of 2 h. The catalyst could easily be removed from reaction mixture, but showed 50% decrease in activity when reused due to leaching of active sites.  相似文献   

18.
Wan Z  Hameed BH 《Bioresource technology》2011,102(3):2659-2664
In this study, methyl ester (ME) was produced by transesterification of palm oil (CPO) (cooking grade) using activated carbon supported calcium oxide as a solid base catalyst (CaO/AC). Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the effect of reaction time, molar ratio of methanol to oil, reaction temperature and catalyst amount on the transesterification process. The optimum condition for CPO transesterification to methyl ester was obtained at 5.5 wt.% catalyst amount, 190 °C temperature, 15:1 methanol to oil molar ratio and 1 h 21 min reaction time. At the optimum condition, the ME content was 80.98%, which is well within the predicted value of the model. Catalyst regeneration studies indicate that the catalyst performance is sustained after two cycles.  相似文献   

19.
The objective of the present work was: (i) to enable biodiesel production from acid waste lard; (ii) to study the esterification reaction as possible pre-treatment at different temperatures, catalyst amount and reaction times; (iii) to evaluate biodiesel quality according to EN 14214 after basic transesterification of the pre-treated fat; and (iv) to predict the impact of using such waste as raw material in mixture with soybean oil. Temperature and catalyst amount were the most important reaction conditions which mostly affected biodiesel quality, namely viscosity and purity. The selected pre-treatment conditions were 65 °C, 2.0 wt% H2SO4 and 5 h, which allowed obtaining a product with a viscosity of 4.81 mm2 s−1 and a purity of 99.6 wt%. The proposed pre-treatment was effective to enable acid wastes as single raw materials for biodiesel production with acceptable quality; however, low yields were obtained (65 wt%). Alkali transesterification of a mixture of waste lard and soybean oil resulted in a product with a purity of 99.8 wt% and a yield of 77.8 wt%, showing that blending might be an interesting alternative to recycle such wastes. Also, because in addition to using conventional and relatively economical processes, some biodiesel properties depending on the raw material composition (such as the iodine value) might even be improved.  相似文献   

20.
Transesterification of soybean oil catalyzed by combusted oyster shell, which is waste material from shellfish farms, was examined. Powdered oyster shell combusted at a temperature above 700 degrees C, at which point the calcium carbonate of oyster shell transformed to calcium oxide, acted as a catalyst in the transesterification of soybean oil. On the basis of factorial design, the reaction conditions of catalyst concentration and reaction time were optimized in terms of the fatty acid methyl ester concentration expressed as biodiesel purity. Under the optimized reaction conditions of a catalyst concentration and reaction time of 25wt.%. and 5h, respectively, the biodiesel yield, expressed relative to the amount of soybean oil poured into the reaction vial, was more than 70% with high biodiesel purity. These results indicate oyster shell waste combusted at high temperature can be reused in biodiesel production as a catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号