首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bandwidth-efficient variable-rate adaptive channel coding scheme, ATCQAM, for time-varying flat-fading channels is proposed. In addition to the forward channel, a low-capacity feedback channel is needed to convey channel state information to the transmitter, possibly with delays and noise. A number of transmission modes, with varying throughputs, are incorporated at the transmitter. Appropriate transmission modes are selected based on the feedback channel states. Design issues for the ATCQAM are considered. A closed-loop control scheme to maintain mode synchronization between the transmitter and the receiver is discussed. The effects of feedback delay, a noisy feedback channel, and mobile speed are investigated. Analytical bounds are derived and simulations are performed to verify the results  相似文献   

2.
In this paper, we introduce multilevel coded continuous-phase frequency-shift keying (CPFSK) systems for both additive white Gaussian noise and fading channels based on multilevel coding and multistage decoding techniques. These schemes are designed under the constraint M⩾2P for M-ary CPFSK with modulation index J/P. In order to maintain the phase continuity property after multilevel coding, we use some specific set partitioning rules. We construct examples to show that the proposed systems outperform the corresponding conventional one-level schemes. For the fading case, we consider an ideal fading channel where adjacent fading symbols are assumed to be independent and a correlated fading channel where bit interleavers are needed at each coding level. The computer simulation results show that the proposed systems have bit-error performance and decoder complexity advantages over the corresponding reference codes taken from the literature. It is also shown that there is only a slight degradation on the bit-error performance for correlated fading, compared to the ideal fading case  相似文献   

3.
For pt.I see ibid., vol.45, no.1, p.64-72, 1997. We use the construction technique proposed in part I to construct multidimensional trellis coded modulation (TCM) codes for both the additive white Gaussian noise (AWGN) and the fading channels. Analytical performance bounds and simulation results show that these codes perform very well and achieve significant coding gains over uncoded reference modulation systems. In addition, the proposed technique can be used to construct codes which have a performance/decoding complexity advantage over the codes listed in literature  相似文献   

4.
It has been well established that the appropriate criterion for optimum trellis-coded modulation design on the additive white Gaussian noise channel is maximization of the free Euclidean distance. It is shown that when the trellis-coded modulation is used on a Rician fading channel with interleaving/deinterleaving, the design of the code of optimum performance is guided by other factors, in particular, the length of the shortest error-event path, and the product of branch distances (possibly normalized by the Euclidean distance of the path) along the path. Although maximum free distance (dfree) is still an important consideration, it plays a less significant role the more severe the fading is on the channel. These considerations lead to the definition of a new distance measure of optimization of trellis codes transmitted over Rician fading channels. If no interleaving/deinterleaving is used, then once again the design of the trellis code is guided by maximizing dfree   相似文献   

5.
Chen  Z. Yuan  J. Vucetic  B. 《Electronics letters》2001,37(7):440-441
It has been established that the appropriate criteria for space-time trellis coded modulation (STTCM) design on slow Rayleigh fading channels are maximisation of the minimum rank and the minimum determinant of the distance matrices. It is demonstrated that when STTCM is used in systems with a large product (>3) of the numbers of transmit and receive antennas, the design of codes with maximum coding gain is governed by the minimum trace of the distance matrices. A number of new codes based on the proposed design criterion have been constructed and shown to be superior to other known codes  相似文献   

6.
An adaptive Viterbi algorithm, derived from a dynamic estimate of the fading channel is used for the decoding of a convolutional coded 16 QAM system in a mobile environment. The estimates are obtained by a sequence of known pilot symbols embedded in the data stream, and perform compensation for Rayleigh fading. The likelihood criterion in the Viterbi decoder is also modified by these channel estimates through a metric weighting function. We demonstrate through computer simulations, that our new technique achieves a BER improvement of 7-10 dB at Pe =10-3 in a fast flat Rayleigh fading environment compared to an uncoded system. The BER performance of our new technique in a co-channel interference (CCI) controlled environment is also studied, and the results show that it may achieve a 40% to 85% improvement in capacity over the standard modem scheme for the new US digital cellular system, π/4-QPSK  相似文献   

7.
The performance of trellis coded and Reed-Solomon coded ARQ error control systems over slowly fading Rayleigh channels are compared and contrasted in this paper. First, a two-code CRC-TCM type-I hybrid-ARQ scheme based on separate error correction and error detection codes is compared to a one-code Reed-Solomon protocol in which retransmission requests are generated within the decoding process. The performance of the associated packet combining protocols is also compared. It is shown that for similar levels of complexity, a onecode Reed-Solomon approach offers both better throughput and reliability performance than the TCM schemes in almost all cases.  相似文献   

8.
Trellis coded modulation (TCM) is a bandwidth efficient transmission scheme that can achieve high coding gain by integrating coding and modulation. This paper presents an analytical expression for the error event probability of concatenated space-time block coding with TCM which reveals some dominant factors affecting the system performance over slow fading channels when perfect interleavers are used. This leads to establishing the design criteria for constructing the optimal trellis codes of such a concatenated system over slow flat fading channels. Through simulation, significant performance improvement is shown to be obtained by concatenating the interleaved streams of these codes with space-time block codes over fading channels. Simulation results also demonstrate that these trellis codes have better error performance than traditional codes designed for single-antenna Gaussian or fading channels. Performance results over quasi-static fading channels without interleaving are also compared in this paper. Furthermore, it is shown that concatenated space-time block coding with TCM (with/without interleaving) outperforms space-time trellis codes under the same spectral efficiency, trellis complexity, and signal constellation.  相似文献   

9.
Ucan  O.N. 《Electronics letters》1996,32(13):1164-1166
For the first time, a partial response fading channel is introduced. The new channel model acts in a similar way to partial response signalling (PRS) with a Rayleigh probability density function. Emphasis is given to jitter and error performances of M-PSK schemes in the proposed channel with ideal channel state information, but with no side information existing on the phase noise process. Analytical upper bounds are derived using the Chernoff bounding technique, combined with the modified generating functional approach. Simulation studies confirming analytically obtained curves are carried out  相似文献   

10.
A method is described for modifying trellis coded modulation systems for use in type-1 hybrid-ARQ protocols. The difference between the partial path metric of the survivor and that of the best nonsurvivor at each node in the trellis is used to determine the desirability of a retransmission request for a given received packet. Bounds on the reliability and throughput performance of the resulting error control scheme are derived for AWGN channels and slowly fading Rician channels. Examples are included to illustrate the achievable gain of the proposed system relative to ordinary forward-error-correcting trellis coded systems. Hybrid-ARQ protocols based on ordinary trellis coded modulation and multiple trellis coded modulation are also compared over slowly fading Rician channels. The dependence of performance on packet length is examined and illustrated by examples. All analytical results are supported by data from a series of simulations  相似文献   

11.
In this paper, error performance bounds are derived for 8-PSK trellis coded modulation (TCM) over Gaussian and fading channels in the presence of phase noise. Coherent demodulation combined with both phase-locked loop (PLL) and transparent tone in band technique (TTIB) for phase recovery is assumed. The analysis is then applied to a number of Ungerboeck 8-PSK trellis codes and the results for the bit error rate (BER) performance, obtained both analytically and by Monte Carlo simulation, are presented. The derived bounds can be directly extended to any M-PSK trellis code  相似文献   

12.
Helard  J.F. 《Electronics letters》1993,29(18):1617-1618
Describes a novel high bit rate Viterbi decoder for 4 AM and 8 AM trellis coded modulation optimised for a Rayleigh frequency selective channel.<>  相似文献   

13.
A previous work on criteria for designing trellis-coded MPSK modulation to achieve minimum error probability performance on the Rician fading channel (see ibid., vol.36, no.9, p.1004-1012, Sep. 1988) is extended. It is demonstrated that allowing for multiple symbols per trellis branch, i.e., multiple trellis-coded modulation (MTCM), provides an additional degree of freedom for designing a code to meet the optimization on the fading channel. Diversities larger than those achievable with conventional trellis codes having the same number of trellis states are now attainable, it is under these conditions that MTCM achieves its full potential  相似文献   

14.
A simple receiver structure previously proposed by the authors for convolutional coded M-ary differential phase-shift keying transmission over flat Rayleigh fading channels without channel state information is analyzed in detail. We present a thorough discussion of the iterative decoding procedure, which is referred to as iterative decision-feedback differential demodulation (iterative DF-DM). The convergence behavior of iterative DF-DM is theoretically examined. The analysis supports the observation that the iterative decoding scheme works well for target bit-error rates which are usually of interest. Furthermore, the associated cut-off rate for error-free decision feedback is studied. Judging from this performance parameter, remarkable gains in power efficiency compared to conventional differential demodulation are indicated, while the computational complexity of the decoding remains low. The results from information theory are in good agreement with the given simulation results  相似文献   

15.
Frame synchronization for coded systems over AWGN channels   总被引:1,自引:0,他引:1  
For the additive white Gaussian noise channel, we consider the problem of frame synchronization for coded systems. We present an algorithm that takes advantage of soft information provided by a soft decoder to produce an enhanced estimate of the frame boundary. To reduce complexity, a companion algorithm is introduced that is a hybrid of the optimal uncoded frame synchronizer introduced by Massey and the list synchronizer introduced by Robertson. The high-complexity coded maximum-likelihood frame synchronizer used by Robertson will accordingly be replaced by our algorithm, which operates on decoder-provided soft decisions. The algorithm begins by obtaining a list of high-probability starting positions via the log-likelihood function of the optimal uncoded frame synchronizer. Then, a test /spl delta/ is used to decide if the decision of the optimal uncoded frame synchronizer is sufficient, or whether list synchronization is required. If the test chooses in favor of using the optimal uncoded synchronizer, the estimate is obtained with relative ease. Otherwise, list synchronization is performed, and statistics provided by the decoder are used to resolve the frame boundary. Monte Carlo simulations demonstrate that the frame-synchronization-error rate (the probability of the synchronizer making an error) achieves the lower bound for signal-to-noise ratio values exceeding 1 dB.  相似文献   

16.
This paper investigates the code search problem for trellis-coded multidimensional phase modulation for Rayleigh fading channels. New set partitionings for multiple phase-shift keying (M-PSK) are proposed using the effective code length (ECL) and the minimum product distance (PD) as the code design criteria. By using these set-partitionings rules, new multidimensional codes which are optimum for Rayleigh fading channels are constructed. The proposed codes compare favorably with the existing multidimensional trellis codes on fading channels in terms of bit error performance. The bit error performance is evaluated by simulation  相似文献   

17.
The design criteria for space-time codes under slow flat Rayleigh fading environments are well known to be the rank criterion and the determinant criterion. However, the derivation of these two criteria is based on the assumption that the signal-to-noise ratio (SNR) is sufficiently high. Hence these criteria are loose when the SNR does not satisfy this assumption. In this letter, we consider this practical issue and derive tighter design criteria for moderate and low SNRs. Some new space-time trellis codes are found based on the new criteria through computer search. Simulation results show that these codes outperform existing codes under their designed SNR conditions  相似文献   

18.
Adaptive coded modulation for fading channels   总被引:3,自引:0,他引:3  
We apply coset codes to adaptive modulation in fading channels. Adaptive modulation is a powerful technique to improve the energy efficiency and increase the data rate over a fading channel. Coset codes are a natural choice to use with adaptive modulation since the channel coding and modulation designs are separable. Therefore, trellis and lattice codes designed for additive white Gaussian noise (AWGN) channels can be superimposed on adaptive modulation for fading channels, with the same approximate coding gains. We first describe the methodology for combining coset codes with a general class of adaptive modulation techniques. We then apply this methodology to a spectrally efficient adaptive M-ary quadrature amplitude modulation (MQAM) to obtain trellis-coded adaptive MQAM. We present analytical and simulation results for this design which show an effective coding gain of 3 dB relative to uncoded adaptive MQAM for a simple four-state trellis code, and an effective 3.6-dB coding gain for an eight-state trellis code. More complex trellis codes are shown to achieve higher gains. We also compare the performance of trellis-coded adaptive MQAM to that of coded modulation with built-in time diversity and fixed-rate modulation. The adaptive method exhibits a power savings of up to 20 dB  相似文献   

19.
We consider the design of trellis codes for transmission of binary images over additive white Gaussian noise (AWGN) channels. We first model the image as a binary asymmetric Markov source (BAMS) and then design source-channel optimized (SCO) trellis codes for the BAMS and AWGN channel. The SCO codes are shown to be superior to Ungerboeck's codes by approximately 1.1 dB (64-state code, 10-5 bit error probability), We also show that a simple “mapping conversion” method can be used to improve the performance of Ungerboeck's codes by approximately 0.4 dB (also 64-state code and 10 -5 bit error probability). We compare the proposed SCO system with a traditional tandem system consisting of a Huffman code, a convolutional code, an interleaver, and an Ungerboeck trellis code. The SCO system significantly outperforms the tandem system. Finally, using a facsimile image, we compare the image quality of an SCO code, an Ungerboeck code, and the tandem code, The SCO code yields the best reconstructed image quality at 4-5 dB channel SNR  相似文献   

20.
It has been established that the appropriate design parameters for space-time trellis code (STTC) in quasi-static flat Rayleigh fading channels are the rank and determinant criteria or the Euclidean distance criterion, depending on the value of the overall diversity gain. We propose two groups of new STTCs with more than two transmit antennas based on these two design criteria, respectively. These new STTCs are shown to achieve large performance improvements over the ones with two transmit antennas  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号