首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
张萍 《测绘通报》2008,(1):30-32
对星载SAR图像进行几何校正是其应用的必要处理步骤,对采用GCP图像片进行自动匹配来实现控制点的快速获取进行研究。在粗匹配阶段应用卫星轨道参数计算待校正图像的四角位置,然后采用仿射变换和重采样方法获取尺度统一、无旋转角的粗匹配区域;在精匹配阶段,采用归一化互相关系数进行同名点的精确定位,给出精确的匹配结果。通过RadarSat多时相SAR图像的试验验证所提出方法的可行性和有效性。  相似文献   

2.
利用轨道参数修正的无控制点星载SAR图像几何校正方法   总被引:1,自引:1,他引:0  
陈继伟  曾琪明  焦健  叶发旺  朱黎江 《测绘学报》2016,45(12):1434-1440
使用距离多普勒模型进行SAR图像几何校正时,卫星轨道误差、系统成像参数误差和DEM高程的误差会影响几何校正精度。本文提出了一种基于轨道参数修正的星载SAR图像几何校正方法。首先利用多项式对卫星轨道进行参数化,然后使用模拟SAR图像与真实SAR图像进行匹配得到控制点来修正轨道参数,最后利用修正后的参数进行几何精校正,从而提高几何校正精度。该方法无需地面控制点,适用于不易于人工测量获取地面控制点地区的SAR图像几何校正,与基于模拟SAR图像匹配并使用多项式改正的几何校正方法相比,本文方法具有更高的精度。使用Radarsat-2图像进行试验,并使用地面实测GPS控制点验证了本方法的有效性。  相似文献   

3.
基于距离多普勒模型的SAR图像系统级几何校正存在一定的误差,需要引入地面控制点来对模型参数进行修正来提高校正精度。针对人工选取地面控制点工作量大且模型参数解算复杂的问题,提出矢量地图作为控制信息,利用SAR图像与矢量地图自动配准的方式实现SAR图像的几何精校正。该方法避免几何精度校正中繁琐的控制点选取过程以及复杂的模型参数解算过程。结果表明,该方法的平均相对精度达到10m左右。  相似文献   

4.
单小军  唐娉  胡昌苗  唐亮  郑柯 《遥感学报》2014,18(2):254-266
环境与灾害监测预报小卫星星座(环境一号卫星,HJ-1A/B)自发射以来,在环境监测、灾害评估、土地资源调查等领域发挥了重要的作用。但是HJ-1A/B卫星CCD图像的2级产品(HJ-1 CCD图像)几何精度低,实际应用中需要进行几何精校正。HJ-1 CCD图像具有宽覆盖、大视场角、几何变形复杂的特点,几何精校正难度大。针对该问题,本文提出了一个以Landsat TM全球拼接图像为基准,基于Forstner算子和模板匹配的分层配准方法。该方法使用分层匹配获得的大量高精度且分布均匀的控制点构建Delaunay三角网,有效地解决了HJ-1 CCD图像的几何精校正问题。在配准技术研究的基础上,研发了HJ-1 CCD图像几何精校正系统,系统具有全球HJ-1 CCD图像的自动批量处理能力。实验结果表明,本文提出的几何精校正方法精度高,实现了环境星图像的自动批量处理。  相似文献   

5.
针对环境与灾害监测预报小卫星(HJ)图像存在较大整体几何误差,且无规律可循,难以使用全局模型模拟整景图像几何变形,而基于手动方式选取控制点的全局模型和局部模型都不适合于HJ图像几何精纠正的问题,提出一种基于加速分段测试特征(features from accelerated segment test,FAST)算法测点并用局部模型进行几何精纠正的优化方法。首先以FAST算法获取大量地面控制点(ground control point,GCP);再使用多项式模型对GCP的均方根误差阈值、潜在不匹配和实际不匹配GCP数量进行相关分析,据此修正FAST参数,筛查GCP误点;最后使用局部模型完成几何精纠正。此外,使用散点图和空间插值等方法建立适合于HJ图像几何精纠正结果的评价指标。检验结果表明,该方法能使纠正误差控制在1.5个像元内,纠正后的图像能满足中分辨率尺度的应用要求。  相似文献   

6.
利用ERDAS IMAGINE进行影像的几何精校正   总被引:14,自引:0,他引:14  
赖震刚  王继 《现代测绘》2003,26(2):38-40
几何精校正是利用地面控制点(GCP)对遥感影像进行的几何校正。用ERDAS IMAGINE软件进行几何精校正,关键在于相关模型参数设置、控制点输入和几何精校正。影响几何精校正的因素,主要表现在GCP的数量、分布和定位精度。此外校正方法不同,影像的纠正精度也不同。  相似文献   

7.
基于自动匹配的高分辨率遥感影像校正方法   总被引:3,自引:1,他引:2  
张伟 《地理空间信息》2009,7(2):123-125
介绍了采用人工选点与计算机自动匹配选点相结合获取一定数量的地面控制点的方法,该方法满足了Thin plate spline校正模型校正的要求.解决了一些高分辨率遥感数据无法用传感器物理模型进行校正的问题。试验证明:在山区采用该方法比常规多项式校正更快捷而且校正效果更好,并具有很好的可操作性和实用性。  相似文献   

8.
为了降低人为因素对遥感图像几何纠正中地面控制点(ground control point,GCP)选取的影响,提高GCP的采集效率,在基准图像上采用2种方法选取GCP:1改进的分水岭分割和加权邻域检测方法选取道路交叉点作为GCP;2GrabCut分割和轮廓检测方法选取区域重心作为GCP。以0.5 m分辨率的航空图像作为基准图像,使用上述方法选取GCP,对2.5 m分辨率的ALOS图像进行几何纠正实验。结果表明,本次研究采用的GCP选取方法受人为因素影响小,精度在1个像元以内,并可实现半自动选取。这一技术成果已经应用于正射影像图(digital orthophoto map,DOM)生产中的GCP提取,在实现中小比例尺DOM更新中发挥了重要作用。  相似文献   

9.
在斜距多普勒定位模型和高精度GPS轨道数据的基础上,提出了一种稀疏控制点(只需要3个控制点)的修轨算法,从而实现高精度星载SAR图像几何校正.该方法通过简化轨道参数模型,减少控制点数量,在保证校正精度的基础上,提高了算法效率.  相似文献   

10.
地面控制点的选取是遥感影像几何纠正中的重要环节。针对人工选取控制点的缺陷,根据控制点数据的特点提出了控制点属性数据和图像数据的一体化存储管理方案;设计了控制点库查询检索、匹配选点的使用流程;实现了一个控制点影像数据库的应用系统。系统的使用效果达到预期设想,大大提高了选点精度和效率。对控制点数据进行建库管理可以充分利用已有控制点成果,并能提高选点效率和精度。  相似文献   

11.
Sea WiFS与AVHRR资料自动几何配准   总被引:3,自引:0,他引:3  
研究了一种自动几何配准的方法,来实现多时相的卫星资料和不同遥感资料之间的几 配准。利用海岸线自动选取GCP的点,借助相关松弛法录找同名点,且有判别机制来保证GCP的正确性,可以方便地得到分布密集的GCP值。同时研究了二元n次方程组和GCP数目与配维精度的关系,得到GCP数目的增加可明显提高几何配准精度。利用该方法对SeaWiFS和AVHRR资料进行了几何配准,可以提高几何配准的精度和节省机时,为遥  相似文献   

12.
遥感影像纠正中GCP选取及自动化实现   总被引:1,自引:0,他引:1  
地面控制点的选取是遥感影像几何纠正中的重要环节。控制点的数量、分布和精度直接影响影像纠正的精度和质量。本文较为系统地总结了控制点选取的诸多要素及注意事项,并对GCP选取的自动化技术进行了探索和实践。  相似文献   

13.
基于影像模拟的SAR几何校正准自动方法   总被引:10,自引:1,他引:10  
合成孔径雷达影像的几何校正是许多微波遥感应用中必须解决的问题,当无法获得准确的轨道数据时,这个问题变得非常困难。本文提出了利用合成孔径雷达模拟影像进行准确的几何校正的原理及方法,并以RADARSAT SAR影像进行了实验。该方法利用不准确的轨道数据及数字高程模型生成模拟的SAR影像,用影像匹配的方法自动获取模拟影像与真实影像之间同名点的坐标差值,而这个差值信息正好提供了对不准确轨道数据的控制。本方法无须地面控制点,并基本上可以自动进行,是解决目前SAR几何校正问题的有效方法。  相似文献   

14.
星载PALSAR影像几何精度定量评价与误差分析   总被引:1,自引:0,他引:1  
燕琴  邱志诚  辛少华 《遥感学报》2009,13(2):212-216
选择有代表性的星载PALSAR影像,利用Doppler、距离、椭球方程建立其成像模型,对其几何定位精度进行了试验,获得了它的几何系统误差和儿何纠正误差的定量值.根据地面高程误差是影响SAR影像几何纠正精度丰要因素的原理,利用计算机仿真技术定量系统地分析了地面高程误差对其几何纠正精度的影响,获得了地面高程误差对视角的影响、视角误差对影像几何精度的影响以及单位高程误差对影像几何精度的影响等定量结论及影响变化规律,为PALSAR影像的处理与应用提供了科学的依据,更重要的是为SAR影像几何精度分析和误差分析提供了一种新的定量方法.  相似文献   

15.
Orthorectification of satellite data is one of the most important pre-processing steps for application oriented evaluations and for image data input into Geographic Information Systems. Although high- and very high-resolution optical data can be rectified without ground control points (GCPs) using an underlying digital elevation model (DEM) to positional root mean square errors (RMSEs) between 3 m and several hundred meters (depending on the satellite), there is still need for ground control with higher precision to reach lower RMSE values for the orthoimages. The very high geometric accuracy of geocoded data of the TerraSAR-X satellite has been shown in several investigations. This is due to the fact that the SAR antenna measures distances which are mainly dependent on the terrain height and the position of the satellite. The latter can be measured with high precision, whereas the satellite attitude need not be known exactly. If the used DEM is of high accuracy, the resulting geocoded SAR data are very precise in their geolocation. This precision can be exploited to improve the orientation knowledge and thereby the geometric accuracy of the rectified optical satellite data. The challenge is to match two kinds of image data, which exhibit very different geometric and radiometric properties. Simple correlation techniques do not work and the goal is to develop a robust method which works even for urban areas, including radar shadows, layover and foreshortening effects. First the optical data have to be rectified with the available interior and exterior orientation data or using rational polynomial coefficients (RPCs). From this approximation, the technique used is the measurement of small identical areas in the optical and radar images by automatic image matching, using a newly developed adapted mutual information procedure followed by an estimation of correction terms for the exterior orientation or the RPC coefficients. The matching areas are selected randomly from a regular grid covering the whole imagery. By adjustment calculations, parameters from falsely matched areas can be eliminated and optimal improvement parameters are found. The original optical data are orthorectified again using the delivered metadata together with these corrections and the available DEM. As proof of method the orthorectified data from IKONOS and ALOS-PRISM sensors are compared with conventional ground control information from high-precision orthoimage maps of the German Cartographic Survey. The results show that this method is robust, even for urban areas. Although the resulting RMSE values are in the order of 2-6 m, the advantage is that this result can be reached even for optical sensors which do not exhibit low RMSE values without using manual GCP measurements.  相似文献   

16.
主要介绍了利用QuiekBird影像结合GPS RTK绘制土地利用现状图的基本技术流程以及相关技术.结合实际生产过程,对遥感影像数据的融合、地面控制点的布设与测量、Quick Bird影像的几何精校正、土地利用现状图的编绘等问题进行了探索.实践结果表明,利用QuickBird影像结合GPS RTK绘制土地利用现状图是一种周期短、见效快、效率高、花费少的切实可行的方法.  相似文献   

17.
SAR影像多项式正射纠正方法与实验   总被引:17,自引:6,他引:11  
提出了一种针对SAR影像的多项式正射纠正法———引入投影差改正的多项式纠正法,并对ERS 2、RADARSAT和机载SAR影像进行了实验。引起SAR影像变形的因素很多,其中多数变形可以通过多项式纠正方法得到改正;但是,因高差引起的变形很难通过一般的多项式纠正方法进行改正。在本文中,先根据斜距和侧视角改正高差引起的投影差,然后用一般多项式纠正的方法改正其他因素引起的变形;重采样时则恰好相反,先根据多项式参数求得未受高差影响的像点坐标,然后加上投影差,从而获得真实的像点坐标。与其他正射纠正的方法相比,本文的方法非常易于实现,而且能够达到相当高的精度。根据以上原理,设计了相应的软件,并对云南大理一幅Radarsat的山区影像进行了纠正实验,控制点精度为2 2个像素;而采用一般多项式,使用同样的控制点,对这幅影像进行纠正,只能达到44 4个像素。另外,使用ERS 2影像和机载SAR影像进行了相应试验,结果类似于Radarsat影像的纠正。因此,本文提出的方法是有效、可行的,能适应地形起伏较大地区的SAR影像的几何校正。  相似文献   

18.
作为多通道合成孔径雷达(SAR)的一种高效便捷的抗干扰方法,SAR多通道对消技术可有效抑制包括散射波干扰在内的多种干扰类型,于是提出采用方位向余弦调相散射波干扰方法来对抗SAR双通道对消的干扰抑制能力。该方法通过对传统散射波干扰慢时间域进行余弦调相,不仅实现了干扰信号的方位向扩展,更使得干扰信号到达各通道之间的相位关系发生严重改变。这种相位差变化会影响干扰对消过程中的自动相位搜索环节,扰乱对消时所需补偿相位的估计结果,进而严重破坏对消后的真实场景成像。以SAR双通道对消系统为例分析了该干扰方法的影响效果,理论分析与实验结果表明:余弦调相散射波干扰可使得补偿相位的估计结果在慢时间上近似正弦分布;在双通道对消成像中,该干扰使得真实场景在方位向上被重复搬移,造成严重的影像重叠,同时在方位向上伴随着密集的明暗条纹;干扰效果可通过设定余弦调制频率、调制指数等参数进行控制。  相似文献   

19.
对于SAR主影像(master)和从影像(slave)的几何配准,文中采用三次基本多项式与斜距-多普勒定位模型,解算出主影像中心像素点在从影像中的同名点,最后得出主从影像中心像素点的初级配准偏移量。本文以上海地区ERS-1影像数据为例,在Matlab环境下,对SAR主从影像的几何配准偏移量进行解算。实验结果表明,采用文中初级配准方法,初级配准相对精度可达到0.1%~0.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号