首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
QoS-aware routing based on bandwidth estimation for mobile ad hoc networks   总被引:17,自引:0,他引:17  
Routing protocols for mobile ad hoc networks (MANETs) have been explored extensively in recent years. Much of this work is targeted at finding a feasible route from a source to a destination without considering current network traffic or application requirements. Therefore, the network may easily become overloaded with too much traffic and the application has no way to improve its performance under a given network traffic condition. While this may be acceptable for data transfer, many real-time applications require quality-of-service (QoS) support from the network. We believe that such QoS support can be achieved by either finding a route to satisfy the application requirements or offering network feedback to the application when the requirements cannot be met. We propose a QoS-aware routing protocol that incorporates an admission control scheme and a feedback scheme to meet the QoS requirements of real-time applications. The novel part of this QoS-aware routing protocol is the use of the approximate bandwidth estimation to react to network traffic. Our approach implements these schemes by using two bandwidth estimation methods to find the residual bandwidth available at each node to support new streams. We simulate our QoS-aware routing protocol for nodes running the IEEE 802.11 medium access control. Results of our experiments show that the packet delivery ratio increases greatly, and packet delay and energy dissipation decrease significantly, while the overall end-to-end throughput is not impacted, compared with routing protocols that do not provide QoS support.  相似文献   

2.
To support Quality of service (QoS)‐sensitive applications like real‐time video streaming in IEEE 802.11 networks, a MAC layer extension for QoS, IEEE 802.11e, has been recently ratified as a standard. This MAC layer solution, however, addresses only the issue of prioritized access to the wireless medium and leaves such issues as QoS guarantee and admission control to the traffic control systems at the higher layers. This paper presents an IP‐layer traffic control system for IEEE 802.11 networks based on available bandwidth estimation. We build an analytical model for estimating the available bandwidth by extending an existing throughput computation model, and implement a traffic control system that provides QoS guarantees and admission control by utilizing the estimated available bandwidth information. We have conducted extensive performance evaluation of the proposed scheme via both simulations and measurements in the real test‐bed. The experiment results show that our estimation model and traffic control system work accurately and effectively in various network load conditions without IEEE 802.11e. The presence of IEEE 802.11e will allow even more efficient QoS provision, as the proposed scheme and the MAC layer QoS support will complement each other. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
This paper focuses on the problem of increasing the traffic capacity (volume of admissible traffic) of broadcast and multicast flows in a wireless mesh network (WMN). We study and suggest routing strategies where the process of constructing the forwarding tree considers three distinct features: (a) the ability of individual mesh nodes to perform link-layer broadcasts at multiple rates, (b) the wireless broadcast advantage, whereby a single broadcast transmission covers multiple neighboring receivers and (c) the residual transmission capacity at a WMN node, subject to intereference-based constraints from existing traffic flows in its neighborhood. Our metric of interest is the total number of broadcast and multicast flows that can be admitted into the network, without resulting in unacceptable degradation in metrics such as packet loss and dissemination latency. Our discrete event simulations show that the broadcast tree construction heuristic which takes both transmission rate and residual bandwidth into account out-performs those that do not. Building on our work on resource-aware broadcast tree construction, we propose a resource-aware multicast tree construction algorithm which exploits the multiple link-layer rates, the wireless broadcast advantage and the amount of resources available. Simulation results show that this algorithm performs better than heuristics based on pruning a broadcast tree or shortest path trees.  相似文献   

4.
In this paper, we present a throughput-maximizing routing metric, referred to as expected forwarding time (EFT), for IEEE 802.11s-based wireless mesh networks. Our study reveals that most of the existing routing metrics select the paths with minimum aggregate transmission time of a packet. However, we show by analyses that, due to the shared nature of the wireless medium, other factors, such as transmission time of the contending nodes and their densities and loads, also affect the performance of routing metrics. We therefore first identify the factors that hinder the forwarding time of a packet. Furthermore, we add a new dimension to our metric by introducing traffic priority into our routing metric design, which, to the best of our knowledge, is completely unaddressed by existing studies. We also show how EFT can be incorporated into the hybrid wireless mesh protocol (HWMP), the path selection protocol used in the IEEE 802.11s draft standard. Finally, we study the performance of EFT through simulations under different network scenarios. Simulation results show that EFT outperforms other routing metrics in terms of average network throughput, end-to-end delay, and packet loss rate.  相似文献   

5.
To optimize the performance of wireless networks, one needs to consider the impact of key factors such as interference from hidden nodes, the capture effect, the network density and network conditions (saturated versus non-saturated). In this research, our goal is to quantify the impact of these factors and to propose effective mechanisms and algorithms for throughput guarantees in multi-hop wireless networks. For this purpose, we have developed a model that takes into account all these key factors, based on which an admission control algorithm and an end-to-end available bandwidth estimation algorithm are proposed. Given the necessary network information and traffic demands as inputs, these algorithms are able to provide predictive control via an iterative approach. Evaluations using analytical comparison with simulations as well as existing research show that the proposed model and algorithms are accurate and effective.  相似文献   

6.
This work presents an admission control mechanism for multi-hop wireless mesh networks based on the IEEE 802.11 standard and the OLSR routing protocol. This mechanism, called CAC-OLSR, aims at ensuring that traffic flows with quality of service (QoS) requirements, especially voice and video, are only admitted in the mesh network if it has available resources in order to provide flow requirements. In addition, QoS requirements of previously admitted traffic flows cannot be violated. The proposal was evaluated with NS-2 and Evalvid simulations.  相似文献   

7.
The past few years have witnessed a surge of wireless mesh networks (WMNs)‐based applications and heterogeneous WMNs are taking advantage of multiple radio interfaces to improve network performance. Although many routing protocols have been proposed for heterogeneous WMNs, most of them mainly relied on hierarchical or cluster techniques, which result in high routing overhead and performance degradation due to low utilization of wireless links. This is because only gateway nodes are aware of all the network resources. In contrast, a unified routing protocol (e.g., optimal link state routing (OLSR)), which treats the nodes and links equally, can avoid the performance bottleneck incurred by gateway nodes. However, OLSR has to pay the price for unification, that is, OLSR introduces a great amount of routing overhead for broadcasting routing message on every interface. In this paper, we propose unified routing protocol (URP), which is based on passive bandwidth measurement for heterogeneous WMNs. Firstly, we use the available bandwidth as a metric of the unification and propose a low‐cost passive available bandwidth estimation method to calculate expected transmission time that can capture the dynamics of wireless link more accurately. Secondly, based on the estimated available bandwidth, we propose a multipoint relays selection algorithm to achieve higher transmission ability and to help accelerate the routing message diffusion. Finally, instead of broadcasting routing message on all channels, nodes running URP transmit routing message on a set of selected high bandwidth channels. Results from extensive simulations show that URP helps improve the network throughput and to reduce the routing overhead compared with OLSR and hierarchical routing. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Distributed quality-of-service routing in ad hoc networks   总被引:10,自引:0,他引:10  
In an ad hoc network, all communication is done over wireless media, typically by radio through the air, without the help of wired base stations. Since direct communication is allowed only between adjacent nodes, distant nodes communicate over multiple hops. The quality-of-service (QoS) routing in an ad hoc network is difficult because the network topology may change constantly, and the available state information for routing is inherently imprecise. In this paper, we propose a distributed QoS routing scheme that selects a network path with sufficient resources to satisfy a certain delay (or bandwidth) requirement in a dynamic multihop mobile environment. The proposed algorithms work with imprecise state information. Multiple paths are searched in parallel to find the most qualified one. Fault-tolerance techniques are brought in for the maintenance of the routing paths when the nodes move, join, or leave the network. Our algorithms consider not only the QoS requirement, but also the cost optimality of the routing path to improve the overall network performance. Extensive simulations show that high call admission ratio and low-cost paths are achieved with modest routing overhead. The algorithms can tolerate a high degree of information imprecision  相似文献   

9.
WSN中基于分簇路由的多维度数据压缩算法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
尹震宇  赵海  徐久强  王金英 《电子学报》2009,37(5):1109-1114
 本文在不减少基站获取传感信息量的前提下,以最大程度减少传输数据量为目的,提出一种在分簇路由协议支持下的时间、空间多维度的数据压缩算法.结合基于空间维度的数据压缩方式设计了一种改进的分簇路由.通过实例验证与仿真评测,该数据压缩算法以及配合该算法设计的路由协议可以显著的减少整个无线传感器网络中数据发送量,延长网络的生存周期.  相似文献   

10.
IEEE 802.11 wireless network standard has become one of the most used wireless networking technologies for smart devices as it offers mobility support and low cost deployment. However, these devices deeply rely on the energy provided by their batteries, which results in limited running time. IEEE 802.11 network standard provides stations with carrier sense multiple access with collision avoidance for the medium access. Yet it results in stations to consume an important amount of power. Therefore, minimizing WiFi‐based energy consumption in smart devices has been received substantial attention in both academia and industry. Accordingly, this paper * proposes a novel beacon‐based energy‐efficient collision‐free medium access control protocol for any type of IEEE 802.11 stations, regardless of being stationary or mobile, or having different amount of traffic flow, transmission rates, or traffic types. The proposed scheme is valid for all types of low or wide bandwidth, single or multiuser multiple‐input multiple‐output WLAN channels, such as IEEE 802.11a\b\g\n\ac. In the proposed scheme, energy saving is achieved, enabling stations to transmit on the right time and maintaining stations in the doze state during a predetermined sleep_time interval after each successful frame transmission, by making use of modified control and management frames of the standard IEEE 802.11 protocol. The proposed scheme reduces the probability of collisions and may allow stations to enter the collision‐free state, regardless of the number of stations on the channel and their traffic types. Widespread simulations have been executed to validate the efficiency of the proposed method. The results demonstrate that the proposed method significantly increases overall throughput and reduces power consumption of stations over IEEE 802.11 WLANs.  相似文献   

11.
In this paper, we focus on call admission control (CAC) in IEEE 802.11 multi-radio multi-rate multi-channel (MR2-MC) wireless mesh networks (WMNs). CAC is the key component of QoS routing protocols. The goal of CAC is to protect existing flows from QoS violations and fully utilize available radio resource on channels. We propose a CAC mechanism, called Contention-Aware Multi-channel Call Admission Control (CMC), for MR2-MC WMNs based on IEEE 802.11 DCF. CMC is fully distributed, relies on local information to estimate the residual bandwidth of a path, and can be integrated into existing routing protocols for MR2-MC WMNs to provide QoS. We evaluate the performance of CMC via ns-2 simulations. The results show that CMC can precisely predict the end-to-end residual bandwidths of paths, successfully protects existing flows from QoS violations, and fully utilizes the bandwidths on channels.  相似文献   

12.
This article presents an algorithm for dynamic-routing and wavelength assignment (D-RWA) in an optical WDM network. The approach is based on a genetic algorithm (GA) and it includes a connection admission control (CAC), to provide a network with simultaneous fairness in distance and bandwidth capacity. The algorithm is evaluated by means of computer simulations using a mesh network with two types of node architectures capable of performing traffic grooming. Combining the two types of nodes, the performance of four network configurations is compared. Assuming that one of the two node types is more costly, two sparse node allocations are suggested to maintain the network cost-effective. The algorithm assigns wavelengths to the ligthpaths, routes the traffic streams, manages the grooming of sub-wavelength tributaries onto full wavelength channels, provides fairness, and minimizes the overall blocking probability of connection requests. Numerical results attest the usefulness of the proposed approach considering several scenarios of distance and bandwidth capacity classes of requests. Simultaneous and isolated simulations of the two fairness schemes are also compared, emphasizing the versatility of the algorithm.  相似文献   

13.
为了解决当前移动无线传感网数据传输中存在的同步寻址困难以及节点间功率交互难以均衡化的问题,提出了一种新的移动无线传感网数据传输算法。首先,采取广播机制实现同步控制分组传输,降低同步流量对寻址过程造成的压力;随后使用区域节点流量阀控制机制,且通过侦听方式记录并获取sink节点—区域节点链路间的数据流量,进一步采取流量—链路均衡方式促进流量均衡化;最后,通过基于轮数—sink 链路周期抖动筛选方式确认受限带宽,减少带宽受限导致的传输故障。仿真实验表明,与BLT-NB2R算法、NLSC算法和HT2C算法相比,所提出的算法可改善数据传输带宽,降低数据分组丢失频率,能够较好地满足实践需求。  相似文献   

14.
We address a multiservice, multirate loss network environment with dynamic routing. In this setting, we consider multiple traffic load periods (multihour) during the day, and by observing network dynamics, we present a network dimensioning model that consists of two steps: a bandwidth estimation step, followed by a multicommodity flow model for multiple services and traffic loads. For network operations, we discuss a probabilistic admission control policy and three multiservice routing schemes. We have used a ten-node network with multiple asymmetric traffic data sets (partially extracted from an actual network) for our study. It was found that the capacity obtained using the analytic network dimensioning model provides a good estimate of network capacity required for meeting the grade-of-service goal for each service type in each traffic load period; this observation is based on a simulated network environment that uses the proposed admission control and the dynamic routing schemes. Our observation suggests that it may not be not necessary for the dimensioning model to explicitly incorporate an admission control policy, but admission control is needed for network operation to provide desirable grade-of-service  相似文献   

15.
赵海涛  董育宁  张晖  李洋 《信号处理》2010,26(11):1747-1755
本文针对如何改善无线多跳Mesh网络的服务质量,满足无线多媒体业务对数据传输的带宽、时延、抖动的要求等问题,研究了一种基于无线信道状态和链路质量统计的MAC层最大重传次数的自适应调整算法。该算法通过对无线Mesh网络的无线信道环境的动态感知,利用分层判断法区分无线分组丢失的主要原因是无线差错还是网络拥塞导致,实时调整MAC层的最佳重传次数,降低无线网络中的分组冲突概率。基于链路状态信息的统计和最大重传策略,提出了一种启发式的基于环境感知的QoS路由优化机制HEAOR。该算法通过动态感知底层链路状态信息,利用灰色关联分析法自适应选择最优路径,在不增加系统复杂度的基础上,减少链路误判概率,提高传输效率。NS2仿真结果表明,HEAOR算法能有效减少重路由次数,降低链路失效概率,提高网络的平均吞吐率。本文提出的方法不仅能够优化MAC层的重传,而且通过发现跨层设计的优化参数实现对路径的优化选择。   相似文献   

16.
Reducing the energy consumption of network nodes is one of the most important problems for routing in wireless sensor networks because of the battery limitation in each sensor. This paper presents a new ant colony optimization based routing algorithm that uses special parameters in its competency function for reducing energy consumption of network nodes. In this new proposed algorithm called life time aware routing algorithm for wireless sensor networks (LTAWSN), a new pheromone update operator was designed to integrate energy consumption and hops into routing choice. Finally, with the results of the multiple simulations we were able to show that LTAWSN, in comparison with the previous ant colony based routing algorithm, energy aware ant colony routing algorithms for the routing of wireless sensor networks, ant colony optimization-based location-aware routing algorithm for wireless sensor networks and traditional ant colony algorithm, increase the efficiency of the system, obtains more balanced transmission among the nodes and reduce the energy consumption of the routing and extends the network lifetime.  相似文献   

17.
In this paper, we present the challenges in supporting multimedia, in particular, VoIP services over multihop wireless networks using commercial IEEE 802.11 MAC DCF hardware, and propose a novel software solution, called Layer 2.5 SoftMAC. Our proposed SoftMAC resides between the IEEE 802.11 MAC layer and the IP layer to coordinate the real-time (RT) multimedia and best-effort (BE) data packet transmission among neighboring nodes in a multihop wireless network. To effectively ensure acceptable VoIP services, channel busy time and collision rate need to be well controlled below appropriate levels. Targeted at this, our SoftMAC architecture employs three key mechanisms: 1) distributed admission control for regulating the load of RT traffic, 2) rate control for minimizing the impact of BT traffic on RT one, and 3) nonpreemptive priority queuing for providing high priority service to VoIP traffic. To evaluate the efficacy of these mechanisms, extensive simulations are conducted using the network simulator NS2. We also implement our proposed SoftMAC as a Windows network driver interlace specification (NDIS) driver and build a multihop wireless network testbed with 32 wireless nodes equipped with IEEE 802.11 a/b/g combo cards. Our evaluation and testing results demonstrate the effectiveness of our proposed software solution. Our proposed collaborative SoftMAC framework can also provide good support for A/V streaming in home networks where the network consists of hybrid WLAN (wireless LAN) and Ethernet  相似文献   

18.
In this paper, we first identify several challenges in designing a joint channel assignment and routing (JCAR) protocol in heterogeneous multiradio multichannel multihop wireless networks (M3WNs) using commercial hardware [e.g., IEEE 802.11 Network Interface Card (NIC)]. We then propose a novel software solution, called Layer 2.5 JCAR, which resides between the MAC layer and routing layer. JCAR jointly coordinates the channel selection on each wireless interface and the route selection among interfaces based on the traffic information measured and exchanged among the two-hop neighbors. Since interference is one of the major factors that constrain the performance in a M3 WN, in this paper, we introduce an important channel cost metric (CCM) which actually reflects the interference cost and is defined as the sum of expected transmission time weighted by the channel utilization over all interfering channels (for each node). In CCM, both the interference and the diverse channel characteristics are taken into account. An expression for CCM is derived in terms of equivalent fraction of air time by explicitly taking the radio heterogeneity into consideration. Using CCM as one of the key performance measures, we propose a distributed algorithm (heuristic) that produces near-optimal JCAR solution. To evaluate the efficacy of our heuristics, we conduct extensive simulations using the network simulator NS2. To demonstrate implementation feasibility, we conducted various experiments for the proposed distributed JCAR algorithm on a multihop wireless network testbed with nine wireless nodes, each is equipped with single/multiple 802.11a/g cards. Both experimental and simulation results demonstrate the effectiveness and implementation easiness of our proposed software solution  相似文献   

19.
In this paper, we present an on‐demand flow regulated routing algorithm (OFRA) for ad hoc wireless networks. The OFRA consists of two parts: an intermediate node load evaluation process and a routing path selection process. The intermediate node load evaluation process evaluates the load efficiency of the intermediate nodes according to bandwidth, data packets and computing capability. The routing path selection process selects the routing path with lower flow and fewer intermediate nodes. The OFRA can prevent intermediate nodes to be overcrowded and distribute traffic load over routing paths more evenly. The simulation result shows that the percentage of blocked routing paths is reduced and the total flow is more balanced and distributed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Bandwidth allocation schemes have been well studied for mobile cellular networks. However, there is no study about this aspect reported for IEEE 802.11 contention-based distributed wireless LANs. In cellular networks, bandwidth is deterministic in terms of the number of channels by frequency division, time division, or code division. On the contrary, bandwidth allocation in contention- based distributed wireless LANs is extremely challenging due to its contention-based nature, packet-based network, and the most important aspect: only one channel is available, competed for by an unknown number of stations. As a consequence, guaranteeing bandwidth and allocating bandwidth are both challenging issues. In this paper, we address these difficult issues. We propose and study nine bandwidth allocation schemes, called sharing schemes, with guaranteed Quality of Service (QoS) for integrated voice/video/data traffic in IEEE 802.11e contention-based distributed wireless LANs. A guard period is proposed to prevent bandwidth allocation from overprovisioning and is for best-effort data traffic. Our study and analysis show that the guard period is a key concept for QoS guarantees in a contention-based channel. The proposed schemes are compared and evaluated via extensive simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号