首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过工业试验对202不锈钢进行系统取样,分析试样中夹杂物的变化特征,结合热力学计算,研究了202不锈钢中非金属夹杂物的形成机理。在进行硅锰脱氧后,LF精炼过程中钢液内以球型Ca?Si?Mn?O夹杂物为主。对于硅锰脱氧钢,钢液中残余铝质量分数为1×10?5时,可以扩大Mn?Si?O相图的液相区,但铝质量分数超过3×10?5会导致钢中容易形成氧化铝夹杂物并减小液相区。在连铸坯中以Mn?Al?O类夹杂物为主,相较于LF精炼过程试样,连铸坯试样中夹杂物的MnO和Al2O3含量明显增加,CaO和SiO2含量明显减小,夹杂物个数则由LF出钢试样的5.5 mm?2增加到11.3 mm?2。结合热力学计算发现,凝固过程中会有Mn?Al?O夹杂物形成,这也使其成为连铸坯中主要的夹杂物类型。   相似文献   

2.
《炼钢》2021,37(2):62-69
对采用"BOF→LF→RH→CC"工艺生产EH36船板钢过程中的夹杂物进行了研究。用SEM-EDS分析了试样中的夹杂物形貌和成分,用FactSage软件计算了夹杂物的析出情况。研究表明:LF进站钢液中夹杂物主要为SiO_2,试样中的MnS是在试样凝固过程中形成的。Ca处理后,液态夹杂物数量增多。经过RH处理后,夹杂物中Al_2O_3含量升高,CaO和MgO含量降低。中间包钢液中夹杂物的Al_2O_3含量降低,CaO含量升高,夹杂物与渣发生反应,使夹杂物成分向低熔点区靠近。中间包渣中SiO_2含量较高,与钢中Al发生反应,使钢液中Si含量升高,Al含量降低。钢液凝固过程中发生成分偏析,使铸坯中夹杂物的S含量明显升高,Al_2O_3含量升高,CaO含量降低。在铸坯中形成了CaO和Al_2O_3比例不同的钙铝酸盐夹杂物以及Al_2O_3夹杂物,且部分钙铝酸盐表面形成CaS。  相似文献   

3.
 为了优化不同钢种的LF精炼钙处理工艺,研究了高强结构钢、低碳结构钢、焊瓶钢、耐磨钢、高碳钢在LF精炼及钙处理过程中夹杂物的演变机理。结果表明,渣 钢反应时间越长,钙处理前的夹杂物变性越彻底。钙处理前焊瓶钢夹杂物以Al2O3为主,高强结构钢、低碳结构钢夹杂物以MgO Al2O3 CaO复合夹杂为主;高碳钢、耐磨钢夹杂物以低熔点的Al2O3 CaO夹杂为主。钙处理工艺会增加钢液中夹杂物数量及尺寸。控制Al2O3 SiO2 MnO复合夹杂物的关键是避免LF精炼中后期进行硅锰合金化。综合考虑各方面因素,建议焊瓶钢增加当前的钙线喂入量,高强结构钢、低碳结构钢使用轻钙处理工艺,高碳钢、耐磨钢取消钙处理工艺。  相似文献   

4.
Q345钢采用铝硅锰复合脱氧,在LF精炼过程中,钢—渣—夹杂物—耐火材料—合金—空气多元体系下夹杂物成分会发生转变。由于纯铁液脱氧热力学不能指导工业生产实践,且目前实际钢液的脱氧热力学没有系统化,需要进行深入研究。结合Factsage7. 0热力学计算,分析了Q345钢LF精炼脱氧、耐材侵蚀、钙处理等引起的钢液[Al]、[Si]、[Mg]、[Ca]含量变化对夹杂物成分的影响。转炉出钢采用铝硅锰复合脱氧,脱氧产物主要为Al2O3,随着钢中[Mg]含量上升,夹杂物由Al2O3转变为MgO·Al2O3尖晶石。钙处理会将夹杂物由MgO·Al2O3尖晶石转变为液态Ca-Al-Mg氧化物,但当喂钙过量时,夹杂物中CaO含量偏高,会影响夹杂物改性效果。利用Factsage7. 0热力学软件分析出的夹杂物成分与直接检测结果一致。  相似文献   

5.
为了降低钢的T[O]含量和生成较低熔点的非金属夹杂物以改善合金结构钢的抗疲劳破坏性能,在炉外精炼中采用了高碱度和高Al2O3含量的渣系.研究发现LF和RH精炼结束时钢液T[O]含量均随炉渣碱度增加而降低,在炉渣Al2O3含量低于25%时,T[O]随炉渣Al2O3含量减少而降低,而当炉渣Al2O3超过25%后,T[O]则随炉渣Al2O3含量增加而降低.精炼过程钢液中夹杂物按"Al2O3系夹杂物→MgO-Al2O3系夹杂物→CaO-MgO-Al2O3系夹杂物"顺序发生转变,其中MgO-Al2O3系夹杂物向CaO-MgO-Al2O3系夹杂物的转变是由外向内逐步进行的,转变速度相对较慢,因而致使LF结束时钢中仍存在许多尚未转变的Mgo-Al2O3系夹杂物.钢液T[O]对夹杂物转变有显著影响,降低T[O]含量有利于生成较低熔点的CaO-MgO-Al2O3系夹杂物.  相似文献   

6.
基于Fact Sage热力学软件的最小吉布斯自由能原理,研究了不同[Ca]、[Mg]、[Al]、[O]含量条件下GCr15轴承钢凝固过程中夹杂物的析出行为。结果表明:随着[Ca]含量由0.000 5%增加至0.004 5%,轴承钢中析出的夹杂物类型由Ca O·2Mg O·8Al_2O_3、Ca O·2Al_2O_3向2Ca O·Si O_2、Ca S转变,钢中夹杂物总质量分数由约0.004 5%增加到约0.009 4%。随着[Mg]含量从0.000 1%增加到0.000 9%,钢中析出的夹杂物由Ca O·Al_2O_3、2Ca O·Si O_2向Mg O·Al_2O_3和Ca S转变,钢中夹杂物总质量分数由约0.003 2%增加到约0.004 1%;[Al]含量由0.005%增加至0.05%时,钢中析出的夹杂物类型由2Ca O·Si O_2向Ca O·Al_2O_3、Ca O·2Al_2O_3转变,夹杂物总量由0.002 8%增加至0.003 3%,变化相对不明显;随着[O]含量由0.000 3%增加至0.002 1%,钢中析出的夹杂物类型由Ca S向Ca O·Al_2O_3、Ca O·2Al_2O_3转变,夹杂物析出量由0.002 4%增加到约0.005 1%。  相似文献   

7.
结合生产实际,采用定量金相和SEM+EDS统计分析方法,研究了硅脱氧条件下,精炼渣碱度对304奥氏体不锈钢在LF精炼、连铸过程夹杂物变化规律的影响。结果表明:钢水中主要形成球状CaO-Al2O3-SiO2类复合夹杂,适当高的精炼渣碱度有利于钢中细小夹杂物的形成。随精炼渣碱度的提高,复合夹杂物中CaO含量增加,SiO2含量减小,Al2O3含量变化不大。现场条件下,由FeSi合金带入钢中的Al形成的Al2O3对复合夹杂物的塑性变形影响较大。在精炼渣碱度分别为1.0和1.5时,铸坯复合夹杂物中Al2O3质量分数为25%左右,夹杂物的变形能力稍弱。  相似文献   

8.
首先采用Fact Sage热力学软件对Ca O-Al2O3-Si O2-Mg O(10%)系夹杂物的塑性化控制进行了讨论,并进行了顶渣成分对夹杂物成分影响的实验室和工业试验研究。研究表明:在Ca O-Al2O3-Si O2-Mg O(10%)相图中,当w(Ca O)=8%~48%,w(Si O2)=35%~75%,w(Al2O3)=0~32%时,夹杂物处于塑性区域。随着顶渣中Al2O3含量的升高,帘线钢夹杂物中的Al2O3含量也随之升高,且夹杂物的分布也随顶渣中w(Al2O3)的升高而变得分散。综合实验室试验研究和工业试验生产结果,通过调节顶渣的成分,将顶渣碱度控制在0.7~0.9,w(Al2O3)=2%~5%时,可控制钢中非金属夹杂物的塑性化,断丝率降低了30%,达到了提高盘条质量的目的。  相似文献   

9.
超低氧含量弹簧钢中非金属夹杂物的控制   总被引:3,自引:1,他引:2  
为了减小夹杂物对Al脱氧弹簧钢的危害,通过钢渣之间、钢液和夹杂物之间的反应尽快使脱氧产物Al2O3夹杂变性为低熔点的铝酸钙夹杂.炉渣ω(CaO)/ω(MgO)高,夹杂物更容易转变为铝酸钙夹杂物,炉渣ω(CaO)/ω(MgO)大于8时,在LF精炼中期,夹杂物已经由MgO·Al2O3尖晶石向铝酸钙转变;炉渣的氧化性延缓了夹杂物向铝酸钙的转变;钢液S、Al含量低,夹杂物更容易控制在低熔点区域内.随着钢液T.O的降低,夹杂物中氧化物夹杂占的比例逐渐减少,CaS夹杂占的比例逐渐增加.  相似文献   

10.
系统分析和研究了采用“EAF→ LF→VD→CC”工艺流程生产试验钢时,各工序的全氧与氮含量的变化情况、钢液中非金属夹杂物的生成与变化以及精炼初渣对夹杂物去除的影响.结果表明:试验钢在LF精炼过程中w(T.O)平均下降42.83%,经VD真空处理后w(T.O)和w(N)平均下降48.77%和10.72%.在LF精炼过程中,钢液中非金属夹杂物按“Al2O3系夹杂物→MgO-Al2O3系夹杂物→CaO-MgO-Al2O3系夹杂物”顺序转变,其中MgO-Al2O3系夹杂物向CaO-MgO-Al2O3系夹杂物转变是由外向内逐步进行,并且夹杂物中CaO与MgO互不相溶.精炼初渣碱度控制在2.5左右对于炉渣吸收夹杂较为有利.  相似文献   

11.
马志飞  孙彦辉  曾亚南  艾西  刘瑞宁  刘泳 《钢铁》2013,48(11):37-42
 系统研究了国内某钢厂生产的中碳钢Q345B钙处理前后夹杂物类型的变化,从热力学上分析铝脱氧钢中Al2O3夹杂物变性机制及夹杂物中CaS合理控制的条件,确立了夹杂物变性的“液相窗口”模型。热力学计算表明,温度为1873K,w([Al])为0.016%时,Al2O3转变为液态钙铝酸盐需要使钢中w([Ca])为0.0017%~0.0102%。生产实践表明,钙喂入量在0.0014%~0.0017%时,钙处理可以将钢中高熔点Al2O3的夹杂物转化为低熔点的12CaO·7Al2O3和CaO·Al2O3夹杂物,MnS基本转化为CaS,且无单独CaS析出。  相似文献   

12.
研究了国内某厂生产X80管线钢精炼过程中夹杂物的转变.BOF出钢阶段加铝脱氧,钢中夹杂物以伴有极少量MgO的Al2O3为主;LF过程采用高碱度高还原性渣精炼,钢中Al2O3夹杂物向钙铝酸盐和CaO-MgO-Al2O3复合夹杂物转变,平均成分靠近低熔点区;RH真空处理后,夹杂物中Al2O3和MgO的含量减少,CaO含量增加,夹杂物成分分布较为分散;钙处理后,钢中CaO-MgO-Al2O3复合夹杂比例明显减少,CaO与CaS比例明显增加,夹杂物平均成分已经远离低熔点区,达到了高品质管线钢的冶炼效果.  相似文献   

13.
通过采用高碱度渣完成了高强度合金钢中非金属夹杂物演变机理的实验室研究讨论,目的在于形成低熔点的夹杂物以提高钢的抗疲劳性能。试验发现:钢/渣反应时间对夹杂物类型、组成和形态影响较大。随着反应时间从30rain延长至180min,固体MgO—Al2O3,以及MgO一基夹杂物最终转变成低熔点的(〈1773K)CaO—MgO—Al2O3,系夹杂物,而夹杂物形态变化路径为块状/角状一近似球状一球状。通过热力学计算得到A1:03/MgO·Al2O3/MgO和MgO/MgO-A1203/CaO·2Al2O3稳定图。结果表明:在钢一渣反应前期阶段将会形成MgO和MgO·Al2O3,夹杂物,因为Mg在钢水中的的活度远大于ca在钢水中的活度。然而,随着Ca活度的增加,固体MgO·Al2O3和MgO夹杂物将不可避免地并且逐步转变成复杂液态夹杂物,甚至当溶解[Ca]低到0.0002%时。因此,通过高熔点固体MgO·Al2O3,或MgO一基夹杂物核心周围被低熔点CaO—Al2O3外表面层环绕,描述CaO—MgO—Al2O3体系夹杂物的SEM—EDS图,其在热轧过程中被软化,因此有助于提高钢的抗疲劳性能。建立的模型阐明了夹杂物的变化机理,定性讨论了夹杂物的转变动力学,分析速度控制环节。从中发现了Mg和Ca在固体夹杂物核心的扩散,并且在夹杂物演变过程过程中,外表面层形成CaO—Al2O3可能是限制环节。然而,仍需进一步定量讨论有关夹杂物演变动力学的研究。  相似文献   

14.
针对新兴铸管炼钢部HRB500钢水钙处理做了热力学计算和现场取样分析。热力学计算结果表明,只需要加入较少的钙,即可使Al2O3变性为CaO·Al2O3,当钢中[Al]=0.006%时,夹杂物变性为12CaO·7Al2O3需要[Ca]≥4.1×10-6。在钢中[Al]含量不变化的情况下,随着钢水温度的降低,钢中的[Ca]含量也随之下降,才能满足夹杂物的成分在12CaO·7Al2O3附近。取样分析结果表明,目前喂CaSi线不足,夹杂物变性不完全。  相似文献   

15.
《炼钢》2015,(6)
对"BOF→LF→CC"流程铝脱氧造较高碱度精炼渣工艺生产60Si2MnA弹簧钢冶炼过程的洁净度进行了调研分析,并从理论上分析了冶炼过程钢中T.O、氮含量和夹杂物数量、尺寸及类型的转变过程。结果表明:冶炼过程钢中T.O含量逐渐降低,氮含量增加,盘条中平均w(T.O)=14.5×10-6,w(N)=30.4×10-6。夹杂物类型变化为Al2O3-SiO_2→Al2O3-SiO_2-Mg O-CaO四元复合夹杂物→Al2O3-SiO_2-MgO-CaO-CaS五元复合夹杂物。控制钢中w(Al)=0.03%左右,钙处理后钢水w(Ca)/w(Al)=0.08~0.11,Al2O3夹杂物能得到充分变性,形成的四元夹杂物处于较低熔点区,而五元夹杂物因含较多高熔点CaS而偏离低熔点区。  相似文献   

16.
通过多种分析手段系统研究了40Cr冷镦钢LF精炼过程夹杂物的变化,得到LF精炼过程钢中夹杂物面积比与T.O含量变化规律相一致,从LF进站到LF出站,钢中夹杂物面积比由1.41%减小到0.45%;并且LF精炼能够有效地去除当量直径大于10μm的大颗粒夹杂物,绝大部分夹杂物的当量直径都落在2~5μm。LF采用高碱度、强还原性炉渣精炼,结合钙处理技术,可以有效地使钢中Al2O3夹杂转变为MgO-Al2O3系、CaO-Al2O3系和CaO-MgO-Al2O3系夹杂,改善钢的可浇性和冷镦性能;但需进一步合理的控制钙处理工艺,减少钢液的卷渣和二次氧化,提高钢液的洁净度。  相似文献   

17.
超低碳钢钢中夹杂物的研究   总被引:1,自引:0,他引:1  
唐复平  常桂华  栗红  陈本文 《钢铁》2007,42(1):20-22,30
为控制超低碳钢中的簇状夹杂物,对超低碳钢中的夹杂物和与全氧含量的关系进行了研究.钢中的夹杂物主要是Al2O3夹杂和Al2O3-TiN复合夹杂,独立夹杂物尺寸大部分小于10 μm.铸坯中w(TO)小于0.003 0%时,钢中仍存在簇状Al2O3夹杂;Al2O3簇状夹杂物与铸坯中全氧含量没有直接关系,所以钢中的全氧含量不能完全代表钢中夹杂物的水平.钢中的簇状Al2O3夹杂物与RH脱碳结束活度氧有关,要控制超低碳钢中簇状Al2O3夹杂物必须稳定生产工艺,减少RH加铝升温,使RH脱碳结束活度氧保持在一定范围.  相似文献   

18.
通过高温试验研究了钙处理和镁处理对含硫易切削钢中夹杂物的控制效果。钙处理后钢中夹杂物为CaAl-O+(Ca,Mn)S复合夹杂物、(Ca,Mn)S以及Mn S夹杂物;镁处理后钢中夹杂物为Mg Al2O4+(Mg,Mn)S、Al2O3+Mn S复合夹杂物、(Mg,Mn)S以及Mn S夹杂物。钙处理和镁处理后钢中的复合夹杂物所占比例分别为0.67%和3.57%。镁处理后钢中Ⅱ类Mn S夹杂物明显减少,91.7%的夹杂物尺寸小于3μm,纺锤率达到72.5%,其对夹杂物的控制效果优于钙处理。  相似文献   

19.
 为了更好地控制CSP工艺下电工钢中的夹杂物,研究了涟钢CSP工艺含铝电工钢夹杂物在精炼连铸热轧过程中的演变机理。RH合金化后钢中夹杂物有Al2O3,Al2O3 SiO2和Al2O3 CaO CaS 主要3种,RH出站和中包钢液中的夹杂物主要是Al2O3 CaO CaS和少量单独的Al2O3和CaS夹杂。减少钢液中夹杂物的主要措施是降低RH出站前的顶渣氧化性。热轧卷材样中夹杂物与钢液中夹杂物不同,主要是AlN和MnS,夹杂物总量与氮、硫质量分数呈正相关,氮元素的影响最显著。  相似文献   

20.
对LF精炼过程低碳铝镇静钢水中非金属夹杂物的变化进行了研究,发现在采用高碱度、强还原性炉渣条件下,Al2O3类夹杂物先向MgO-Al2O3系夹杂物并进而向CaO-MgO-Al2O3系夹杂物和CaO-CaS-Al2O3系夹杂物转变。在LF精炼结束时,钢中已基本没有对钢水可浇性影响最大的Al2O3系夹杂物,因此可以减少LF精炼后对钢水进行钙处理用的钙线量,以降低生产成本并减少由于钙处理而生成的大尺寸钙铝酸盐夹杂物的数量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号