首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Open-pore Ti foam samples with porosity in the range of 10–70% and average pore size of 150–400 μm was fabricated by powder metallurgy method using polymethyl methacrylate (PMMA) as space holder initially. The resulting foam is anisotropic: the pores are spheroidal, being shorter along the pressing direction than in the pressing plane. The pore anisotropy decreases as the size of the polymethyl methacrylate (PMMA) particles used increases and hence with pore size, which leads to a higher conductivity in the plane of the pressing. As the porosity increases, the conductivity of porous Ti decreases dramatically. The porosity e{\varepsilon} dependence of the electrical conductivity σ could be well described by Maxwell approximation, while the differential effective medium approximation is only suitable to porous Ti with finite size of 400 μm in the porosity range of 40–70%, i.e., high porosity metal with randomly oriented spheroids.  相似文献   

2.
The construction of a faithful 3D pore space model of a porous medium that could reproduce the macroscopic behavior of that medium is of great interest in various fields including medicine, material science, hydrology and petroleum engineering. A computationally efficient algorithm is developed that uses the probability perturbation method and sequential multiple-point statistics simulations to generate 3D stochastic and equiprobable representations of random porous media when only a 2D thin section image is available. By employing the probability perturbation method as a gradual deformation technique, the pore patterns of a single 2D image are deformed to generate a series of 2D stochastically simulated images. The 3D pore structure is then generated by simply stacking the 2D-simulated images. The quality of the 3D reconstruction is critically dependent on the rate of deformation and a simple general procedure for choosing this parameter is presented. Various criteria such as porosity, two-point auto-correlation function, multiple-point connectivity function, local percolation probability, absolute permeability obtained by lattice-Boltzmann method (LBM), formation factor and two-phase relative permeability calculations are used to validate the results. The method is tested on two random porous solids; Berea Sandstone and synthetic Silica, for which directly measured 3D micro-CT images are available. The stochastically reconstructed 3D pore space preserves the low- and high-order spatial statistics, the macroscopic flow properties and the microstructure of the 3D micro-CT images.  相似文献   

3.
4.
Physical mechanisms and influencing factors on the effective stress coefficient for rock/soil-like porous materials are investigated, based on which equivalent connectivity index is proposed. The equivalent connectivity index, relying on the meso-scale structure of porous material and the property of liquid, denotes the connectivity of pores in Representative Element Area (REA). If the conductivity of the porous material is anisotropic, the equivalent connectivity index is a second order tensor. Based on the basic theories of continuous mechanics and tensor analysis, relationship between area porosity and volumetric porosity of porous materials is deduced. Then a generalized expression, describing the relation between effective stress coefficient tensor and equivalent connectivity tensor of pores, is proposed, and the expression can be applied to isotropic media and also to anisotropic materials. Furthermore, evolution of porosity and equivalent connectivity index of the pore are studied in the strain space, and the method to determine the corresponding functions in expressions above is proposed using genetic algorithm and genetic programming. Two applications show that the results obtained by the method in this paper perfectly agree with the test data. This paper provides an important theoretical support to the coupled hydro-mechanical research.  相似文献   

5.
We present a process based method for reconstructing the full three-dimensional microstructure of sandstones. The method utilizes petrographical information obtained from two-dimensional thin sections to stochastically model the results of the main sandstone forming processes – sedimentation, compaction, and diagenesis. We apply the method to generate Fontainebleau sandstone and compare quantitatively the reconstructed microstructure with microtomographic images of the actual sandstone. The comparison shows that the process based reconstruction reproduces adequately important intrinsic properties of the actual sandstone, such as the degree of connectivity, the specific internal surface, and the two-point correlation function. A statistical reconstruction of Fontainebleau sandstone that matches the porosity and two-point correlation function of the microtomography data differs strongly from the actual sandstone in its connectivity properties. Transport properties of the samples are determined by solving numerically the local equations governing the transport. Computed permeabilities and formation factors of process based reconstructions of Fontainebleau sandstone compare well with experimental measurements over a wide range of porosity.  相似文献   

6.
7.
Methods for reconstructing three-dimensional porous media from two-dimensional cross sections are evaluated in terms of the transport properties of the reconstructed systems. Two-dimensional slices are selected at random from model three-dimensional microstructures, based on penetrable spheres, and processed to create a reconstructed representation of the original system. Permeability, conductivity, and a critial pore diameter are computed for the original and reconstructed microstructures to assess the validity of the reconstruction technique. A surface curvature algorithm is utilized to further modify the reconstructed systems by matching the hydraulic radius of the reconstructed three-dimensional system to that of the two-dimensional slice. While having only minor effects on conductivity, this modification significantly improves the agreement between permeabilities and critical diameters of the original and reconstructed systems for porosities in the range of 25–40%. For lower porosities, critical pore diameter is unaffected by the curvature modification so that little improvement between original and reconstructed permeabilities is obtained by matching hydraulic radii.  相似文献   

8.
9.
This paper presents a new water retention curve (WRC) model for the simulation of coupled thermo-hydro-mechanical processes in geological porous media. The model simultaneously considers the impact of porosity and temperature on suction, for both wetting processes and drying processes. The model is based on an idealization of porous geological media as having an isotropic and homogeneous microscopic pore structure. Suction is expressed as a function of degree of saturation, porosity, surface tension of the water–air interface, and the length of air bubble perimeter of the pores per unit area on a random 2D cross-section of the medium. The tension of water–air interface is written as a function of temperature, and the length of perimeter of the water–air interface of the pores becomes a function of porosity and degree of saturation. The final equation of the new WRC is a function of suction, effective degree of saturation, temperature, porosity, pore-gas pressure, and the rate of degree of saturation change with time for both wetting and drying processes. The model was used to fit experimental data of the FEBEX bentonite, with good agreements between measured and calculated results.  相似文献   

10.
11.
A lattice Boltzmann (LB) method is developed in this article in a combination with X-ray computed tomography to simulate fluid flow at pore scale in order to calculate the anisotropic permeability of porous media. The binary 3D structures of porous materials were acquired by X-ray computed tomography at a resolution of a few microns, and the reconstructed 3D porous structures were then combined with the LB model to calculate their permeability tensor based on the simulated velocity field at pore scale. The flow is driven by pressure gradients imposed in different directions. Two porous media, one gas diffusion porous layer used in fuel cells industry and glass beads, were simulated. For both media, we investigated the relationship between their anisotropic permeability and porosity. The results indicate that the LB model is efficient to simulate pore-scale flow in porous media, and capable of giving a good estimate of the anisotropic permeability for both media. The calculated permeability is in good agreement with the measured date; the relationship between the permeability and porosity for the two media is well described by the Kozeny–Carman equation. For the gas diffusion layer, the simulated results showed that its permeability in one direction could be one order of magnitude higher than those in other two directions. The simulation was based on the single-relaxation time LB model, and we showed that by properly choosing the relaxation time, it could give similar results to those obtained using the multiple-relaxation time (MRT) LB method, but with only one third of the computational costs of MRTLB model.  相似文献   

12.
Pore network analysis is used to investigate the effects of microscopic parameters of the pore structure such as pore geometry, pore-size distribution, pore space topology and fractal roughness porosity on resistivity index curves of strongly water-wet porous media. The pore structure is represented by a three-dimensional network of lamellar capillary tubes with fractal roughness features along their pore-walls. Oil-water drainage (conventional porous plate method) is simulated with a bond percolation-and-fractal roughness model without trapping of wetting fluid. The resistivity index, saturation exponent and capillary pressure are expressed as approximate functions of the pore network parameters by adopting some simplifying assumptions and using effective medium approximation, universal scaling laws of percolation theory and fractal geometry. Some new phenomenological models of resistivity index curves of porous media are derived. Finally, the eventual changes of resistivity index caused by the permanent entrapment of wetting fluid in the pore network are also studied.Resistivity index and saturation exponent are decreasing functions of the degree of correlation between pore volume and pore size as well as the width of the pore size distribution, whereas they are independent on the mean pore size. At low water saturations, the saturation exponent decreases or increases for pore systems of low or high fractal roughness porosity respectively, and obtains finite values only when the wetting fluid is not trapped in the pore network. The dependence of saturation exponent on water saturation weakens for strong correlation between pore volume and pore size, high network connectivity, medium pore-wall roughness porosity and medium width of the pore size distribution. The resistivity index can be described succesfully by generalized 3-parameter power functions of water saturation where the parameter values are related closely with the geometrical, topological and fractal properties of the pore structure.  相似文献   

13.
The reflection and transmission characteristics of an incident plane P1 wave from the interface of a fluid-saturated single porous solid and a fluid-saturated double porosity solid are investigated. The fluid-saturated porous solid is modeled with the classic Biot’s theory and the double porosity medium is described by an extended Biot’s theory. In a double-porosity model with dual-permeability there exist three compressional waves and a shear wave. The effects of the incident angle and frequency on amplitude ratios of the reflected and transmitted waves to the incident wave are discussed. Two boundary conditions are discussed in detail: (a) Open-pore boundary and (b) Sealed-pore boundary. Numerical results reveal that the characteristics of the reflection and transmission coefficients to the incident angle and the frequency are quite different for the two cases of boundary conditions. Properties of the bulk waves existing in the fluid-saturated porous solid and the double porosity medium are also studied.  相似文献   

14.
The class of models of porous media based on the concept of an ensemble of pores with a certain distribution of the main geometrical parameters (e.g., pore size) is studied. The case of the saturation of the pore space with a single-phase multicomponent fluid mixture is studied with and without taking into account the transfer of electric charges. Transfer laws are derived from the condition of decreasing free energy. The hydrodynamic connectivity of pores (and electrical conductivity) is described by two kernels: one kernel describes the connectivity of pores in space, and the other describes the connectivity of pores in the elementary macrovolume. The frequency dependences of the dynamic permeability determined in laboratory experiments and the electrical conductivity of the porous medium were determined using the concept of an ensemble of pores. The relationship between the models considered and relaxation filtration models is established.  相似文献   

15.
多孔材料孔隙尺寸对渗透系数影响的数值模拟   总被引:1,自引:1,他引:0  
采用有限元方法数值模拟了多孔材料的孔隙尺寸与等效渗透系数之间的非线性关系.有限元模型中的固体骨架和孔隙根据孔隙率的大小随机生成,模型中的材料参数和单元属性用ANSYS中的APDL参数化语言赋值.根据有限元随机模拟断面的流量分布和稳态渗流问题的达西定律,计算在不同孔隙尺寸的等效渗透系数,研究等效渗透系数与孔隙尺寸之间的关系.计算结果表明,在孔隙率不变的情况下,等效渗透系数与孔隙尺寸的平方成正比,该结论与经验公式相一致.而孔隙尺寸不变的条件下,随着孔隙率的增加等效渗透系数近似呈线性增加.  相似文献   

16.
An increasing number of articles are adopting Brinkman’s equation in place of Darcy’s law for describing flow in porous media. That poses the question of the respective domains of validity of both laws, as well as the question of the value of the effective viscosity μ e which is present in Brinkman’s equation. These two topics are addressed in this article, mainly by a priori estimates and by recalling existing analyses. Three main classes of porous media can be distinguished: “classical” porous media with a connected solid structure where the pore surface S p is a function of the characteristic pore size l p (such as for cylindrical pores), swarms of low concentration fixed particles where the pore surface is a function of the characteristic particle size l s , and fiber-made porous media at low solid concentration where the pore surface is a function of the fiber diameter. If Brinkman’s 3D flow equation is valid to describe the flow of a Newtonian fluid through a swarm of fixed particles or fibrous media at low concentration under very precise conditions (Lévy 1983), then we show that it cannot apply to the flow of such a fluid through classical porous media.  相似文献   

17.
D. Rochette 《Shock Waves》2007,17(1-2):103-112
The paper deals with the numerical method of the compressible gas flow through a porous filter emphasizing the treatment of the interface between a pure gaseous phase and a solid phase. An incident shock wave is initiated in the gaseous phase interacting with a porous filter inducing a transmitted and a reflected wave. To take into account the discontinuity jump in the porosity between the gaseous phase and the porous filter, an approximate Riemann solver is used to compute homogeneous non-conservative Euler equations in porous media using ideal gas state law. The discretization of this problem is based on a finite volume method where the fluxes are evaluated by a “volumes finis Roe” (VFRoe) scheme. A stationary solution is determined with a continuous variable porosity in order to test the numerical scheme. Numerical results are compared with the two-phase shock tube experiments and simulations of a shock wave attenuation and gas filtration in porous filters are presented.   相似文献   

18.
This study concentrates on the unsteady magnetohydrodynamics (MHD) rotating flow of an incompressible generalized Burgers’s fluid past a suddenly moved plate through a porous medium. Modified Darcy’s law for generalized Burgers’s fluid in a rotating frame has been used to model the governing flow problem. The closed form solution of the governing flow problem has been obtained by employing Laplace transform technique. The integral appearing in the inverse Laplace transform has been evaluated numerically. The influence of various parameters on the velocity profile has been delineated through several graphs and discussed in detail. It was found that the fluid is decelerated with increasing Hartmann number M and porosity parameter K. However, for large Hall parameter m, the real part of velocity decreases and the imaginary part of velocity increases.  相似文献   

19.
The linear stability of thermal convection in a rotating horizontal layer of fluid-saturated porous medium, confined between two rigid boundaries, is studied for temperature modulation, using Brinkman’s model. In addition to a steady temperature difference between the walls of the porous layer, a time-dependent periodic perturbation is applied to the wall temperatures. Only infinitesimal disturbances are considered. The combined effect of rotation, permeability and modulation of walls’ temperature on the stability of flow through porous medium has been investigated using Galerkin method and Floquet theory. The critical Rayleigh number is calculated as function of amplitude and frequency of modulation, Taylor number, porous parameter and Prandtl number. It is found that both, rotation and permeability are having stabilizing influence on the onset of thermal instability. Further it is also found that it is possible to advance or delay the onset of convection by proper tuning of the frequency of modulation of the walls’ temperature.  相似文献   

20.
A method of 3-D stochastic reconstruction of porous media based on statistical information extracted from 2-D sections is evaluated with reference to the steady transport of electric current. Model microstructures conforming to measured and simulated pore space autocorrelation functions are generated and the formation factor is systematically determined by random walk simulation as a function of porosity and correlation length. Computed formation factors are found to depend on correlation length only for small values of this parameter. This finding is explained by considering the general percolation behavior of a statistically homogeneous system. For porosities lower than about 0.2, the dependence of formation factor on porosity shows marked deviations from Archie's law. This behavior results from the relatively high pore space percolation threshold (0.09) of the simulated media and suggests a limitation to the applicability of the method to low porosity media. It is additionally demonstrated that the distribution of secondary porosity at a larger scale can be simulated using stochastic methods. Computations of the formation factor are performed for model media with a matrix-vuggy structure as a function of the amount and spatial distribution of vuggy porosity and matrix conductivity. These results are shown to be consistent with limited available experimental data for carbonate rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号