首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Acidification of freshwater environments (terrestrial, surface water, and freshwater sediment) can significantly affect the geochemistry of Al, Cd, Pb and Hg; for example, metal mobility within soils (Al, Cd), the relative distribution of dissolved metal species (Al, Cd, Pb, Hg), and the sedimentation rate of metals in standing water bodies (Cd, Pb) can be altered by acidification. In this critical review of the literature over the last decade concerned with the interaction of acidification with these four metals, we have attempted both to provide an assessment of the current state of knowledge in this field and to emphasize those areas where significant progress has been made since the possible implications of environmental acidification on metal geochemistry became widely appreciated in the late 1970s. We have also indicated those areas which we feel are most in need of further research.  相似文献   

2.

Purpose

The objective of this paper is to assess the regulation of the accumulation of heavy metals in the aquatic environment and different fish species.

Methods

Water and fish samples were collected from upper to lower reaches of the Yangtze River. The heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in the muscle tissue of seven fishes were measured. Additionally, the relationships between heavy metal concentrations in fish tissue and fish size (length and weight), condition factor, water layer distribution, and trophic level were investigated.

Results

Metal concentrations (milligrams per kilogram wet weight) were found to be distributed differently among different fish species. The highest concentrations of Cu (1.22?mg/kg) and Zn (7.55?mg/kg) were measured in Pelteobagrus fulvidraco, the highest concentrations of Cd (0.115?mg/kg) and Hg (0.0304?mg/kg) were measured in Silurus asotus, and the highest concentrations of Pb (0.811?mg/kg) and Cr (0.239?mg/kg) were measured in Carassius auratus and Cyprinus carpio. A positive relationship was found between fish size and metal level in most cases. The variance of the relationships may be the result of differences in habitat, swimming behavior, and metabolic activity. In this study, fishes living in the lower water layer and river bottom had higher metals concentrations than in upper and middle layers. Benthic carnivorous and euryphagous fish had higher metals concentrations than phytoplankton and herbivorous fish. Generally, fish caught from the lower reach had higher metals concentrations than those from the upper reach.

Conclusions

Cadmium and lead concentrations in several fishes exceeded the permissible food consumption limits, this should be considered to be an important warning signal.  相似文献   

3.
Environmental Science and Pollution Research - Mercury (Hg) bioaccumulation in fish poses severe threats to the food safety and human health. This study was conducted to assess Hg bioaccumulation...  相似文献   

4.
Pociecha M  Lestan D 《Chemosphere》2012,86(8):843-846
Soil washing with EDTA is known to be an effective means of removing toxic metals from contaminated soil. A practical way of recycling of used soil washing solution remains, however, an unsolved technical problem. We demonstrate here, in a laboratory scale experiment, the feasibility of using acid precipitation to recover up to 50% of EDTA from used soil washing solution obtained after extraction of Pb (5330 mg kg−1), Zn (3400 mg kg−1), Cd (35 mg kg−1) and As (279 mg kg−1) contaminated soil. Up to 100% of EDTA residual in the washing solution and 100%, 97%, 98% and 100% of initial Pb, Zn, Cd and As concentration in the solution, respectively, were removed in an electrolytic cell using a graphite anode. We employed the recovered EDTA and treated washing solution to prepare recycled soil washing solution with the same potential for extracting toxic metals from soil as the original. The efficiency of soil washing depends on the EDTA concentration. Using twice recycled 30 mmol EDTA kg−1 soil, we removed 44%, 20%, 53% and 61% of Pb, Zn, Cd and As, respectively, from contaminated soil.  相似文献   

5.
Heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) concentrations in the muscle, gill and liver of six fish species (Sparus auratus, Atherina hepsetus, Mugil cephalus, Trigla cuculus, Sardina pilchardus and Scomberesox saurus) from the northeast Mediterranean Sea were measured and the relationships between fish size (length and weight) and metal concentrations in the tissues were investigated by linear regression analysis. Metal concentrations (as microg/g d.w.) were highest in the liver, except for iron in the gill of Scomberesox sauris and lowest in the muscle of all the fish species. Highest concentrations of Cd (4.50), Cr (17.1) and Pb (41.2) were measured in liver tissues of T. cuculus, Sardina pilchardus and A. hepsetus, respectively. The liver of M. cephalus showed strikingly high Cu concentrations (202.8). The gill of Scomberesox saurus was the only tissue that showed highest (885.5) iron concentrations. Results of linear regression analysis showed that, except in a few cases, significant relationships between metal concentrations and fish size were negative. Highly significant (P<0.001) negative relationships were found between fish length and Cr concentrations in the liver of A. hepsetus and M. cephalus, and Cr concentrations in the gill of T. cuculus. Cr and Pb concentrations in the liver and Cu concentrations in all the tissues of Scomberesox saurus also showed very significant (P<0.001) negative relationships. Negative relationships found here were discussed.  相似文献   

6.
Distribution of Pb, Cd and Ba in soils and plants of two contaminated sites   总被引:17,自引:0,他引:17  
Evaluation of metal accumulation in soils and plants is of environmental importance due to their health effects on humans and other biota. Soil material and plant tissue were collected along transects in two heavily contaminated facilities, a Superfund site and a lead-acid battery dump, and analyzed for metal content. Soil lead (Pb), cadmium (Cd) and barium (Ba) concentrations for the Superfund site averaged 55,480, 8.5 and 132.3 mg/kg, respectively. Soil Pb occurred primarily in the carbonate, sulfide/residual and organic chemical fractions (41.6, 28.6 and 16.7%, respectively). Soil Pb, Cd and Ba concentrations for the dump site averaged 29,400, 3.9 and 1130 mg/kg, respectively. Soil Pb occurred mostly in the organic and carbonate fractions as 48.5 and 42.5%, respectively. Pb uptake in the two sites ranged from non-detectable (Agrostemma githago, Plantago rugelii, Alliaria officinalis shoots), to 1800 mg/kg (Agrostemma githago root). Cd uptake was maximal in Taraxacum officinale at 15.4 mg/kg (Superfund site). In the majority > or =65%) of the plants studied, root Pb and Cd content was higher than that for the shoots. Tissue Pb correlated slightly with exchangeable and soluble soil Pb; however, tissue Cd was poorly correlated with soil Cd species. None of the sampled plants accumulated measurable amounts of Ba. Those plants that removed most Pb and Cd were predominantly herbaceous species, some of which produce sufficient biomass to be practical for phytoremediation technologies. Growth chamber studies demonstrated the ability of T. officinale and Ambrosia artemisiifolia to successfully remove soil Pb and Cd during repeated croppings. Tissue Pb was correlated with exchangeable soil Pb at r(2)=0.68 in Ambrosia artemisiifolia.  相似文献   

7.
8.
The determination of Pb, V, Cr, Ni, Cd, Cu and Fe in particles of different size obtained from the combustion of waste oils has been carried out. The study consists of the separation of several fractions according to the size of particles, the wet digestion and the individual analysis by graphite furnace atomic absorption spectrometry of the mentioned metals. Taking into account the volatilization temperature of different compounds containing the metals and their distribution on the size fractions, the mineral speciation of metals is proposed.  相似文献   

9.
This study provides, for the first time, data regarding levels of toxic metals (Hg, Cd, and Pb) and organochlorine compounds (PCBs and DDTs) in various aromatic herbs as rosemary (Rosmarinus officinalis), sage (Salvia officinalis), laurel (Laurus nobilis), oregano (Origanum vulgare), and spearmint (Mentha viridis) collected in some towns of the Southern Italy with different anthropogenic and population pressure. Metal and organochlorine compound concentrations were determined using atomic absorption spectrophotometer and gas-chromatography mass spectrometer (GC/MS), respectively. Pb emerged as the most abundant element, followed by Cd and Hg, while between organochlorine compounds, PCB concentrations were higher than those of DDTs. The pollutant concentrations were found to vary depending on the different herbs. The highest Pb levels were observed in rosemary (1.66 μg g?1 dry weight) and sage (1.41 μg g?1 dry weight), this latter showing also the highest Cd concentrations (0.75 μg g?1 dry weight). For PCBs, the major concentrations were found in rosemary (2.75 ng g?1 dry weight) and oregano (2.39 ng g?1 dry weight). The principal component analysis applied in order to evaluate possible similarities and/or differences in the contamination levels among sampling sites indicated differences area-specific contamination.  相似文献   

10.
Environmental Science and Pollution Research - The aim of the study was to determine if gold-mining activities could impact the mercury (Hg) concentrations and isotopic signatures in freshwater...  相似文献   

11.
Sediments of the Patroon Creek watershed (33 km(2)) are known to contain significant concentrations of heavy metals derived from two industrial sites within the watershed. Mercury Refining, Inc (Mereco) has stored and recycled Hg from 1955 to the present day, and National Lead Industries (NLI) manufactured aircraft components containing Cd, Pb, and U from 1958 to 1984. Here we present the first record of heavy metal deposition as preserved in a 3-m long sediment core collected in 1999 from Patroon Reservoir, a small water body (1.3 ha) downstream of the industrial sites. Bulk sediment samples were collected from the core at 0.05-m intervals and analyzed for total Cd, Pb, and U by ICP-MS and total Hg by CVAAS. Total Hg increases from less than 1 mg kg(-1) (dw) below 1.68 m, to a maximum of 6.2 mg kg(-1) at 0.80 m, and then declines to the sediment-water interface. Total Cd, Pb, and U concentrations increase abruptly above 1.68 m to maximum values of 25, 320, and 3600 mg kg(-1) (dw), respectively, and then decline gradually upwards. By correlating metal profiles with industrial history, we conclude that the 1.68 m horizon was deposited no earlier than 1958, the beginning of aircraft component manufacturing at NLI. The average, apparent sedimentation rate within the reservoir has a minimum value of approximately 0.04 m year(-1) for the 41-year period from 1958 to 1999. In the interval 0--1.68 m, average concentrations of Cd, Hg, Pb, and U are 1.69, 1.50, 461, and 13 mg kg(-1), respectively. These levels are comparable with other lake, reservoir and stream sediments that have been moderately to severely impacted by industrial pollution and are above levels expected to be detrimental to aquatic organisms.  相似文献   

12.
汞、铅、铬污染土壤的微生物修复   总被引:2,自引:0,他引:2  
利用裂褶菌(Schizophyllum commune)GGHN08-116菌株,以棉籽壳、玉米秸等为固体发酵底物修复受汞、铅、铬污染的土壤。通过菌丝穿透重度重金属土壤实验,研究了菌丝在穿透土壤过程对交换态重金属的影响以及该菌株子实体对重金属离子的富集能力,同时,通过盆栽实验研究了在重度重金属污染土壤上,施用不同比例的固体发酵料对污染土壤中汞、铅、铬及其胡萝卜根茎质量、产量的影响,研究结果表明,该菌株能穿透厚度为5 cm的土壤,并有子实体生成,土壤pH值略有下降,与对照差异不显著;与对照相比,土壤中交换态汞、铬含量均显著下降,而交换态铅差异不显著,子实体中除汞含量符合标准外,铅、铬均超出了GB 7096-2003,GB 2762-2005规定标准。在固体发酵料处理下土壤中交换态汞、铅、铬含量均显著下降,胡萝卜根茎中均未检测到汞、铅含量,铬含量也符合GB 2762-2005规定标准。GGHN08-116菌株及其固体发酵产物具有修复受重金属污染土壤的能力。  相似文献   

13.
Pikeperch (Sander lucioperca), European catfish (Silurus glanis), common carp (Cyprinus carpio), and gobies (Neogobius gymnotrachelus, Neogobius melanostomus) were collected from the Danube River (Belgrade section), and samples of liver, muscle, or whole-body composites (in the case of gobies) were analyzed for As, Cu, Fe, Hg, Mn, and Zn with inductively coupled plasma optical spectrometry to find out if there was a correlation between accumulation of these elements in predatory and prey species, as well as in pairs of species with overlapping diets. Concentrations of all analyzed elements were either higher (Cu, Fe, Mn, Zn) in liver than in muscle, or equal (As, Hg), except for Hg in carp, which was higher in muscle. Mercury concentration in liver and muscle of predators (catfish, pikeperch) was significantly (<10?4) higher than in prey fishes (carp and gobies). The results indicate that Hg concentration was biomagnified through the food chain. Concentrations of As, Fe, and Hg in carp liver and gobies whole-body composite were similar, but carp had significantly (<10?4) higher values of Zn and Cu in liver. The regression analysis and trendline equations indicate that the concentrations of all tested elements, except for As in liver, and Mn and Fe in muscle, were similar in predatory fish (pikeperch and catfish), on one hand, and in prey fish (carp and gobies), on the other hand. Distinctly high Zn concentration in carp is very common in this species due to its physiology. Concentrations of Hg and Zn were higher than the maximum acceptable concentration due to the high pollution level in this section of the Danube River, accordingly posing a risk for the human consumption of these fish species.  相似文献   

14.
This study is aimed at investigating the impact of water quality on the uptake and distribution of three non-essential and toxic elements, namely, As, Cd and Pb in the watercress plant to assess for metal toxicity. The plant was hydroponically cultivated under greenhouse conditions, with the growth medium being spiked with varying concentrations of As, Cd and Pb. Plants that were harvested weekly for elemental analysis showed physiological and morphological symptoms of toxicity on exposure to high concentrations of Cd and Pb. Plants exposed to high concentrations of As did not survive and the threshold for As uptake in watercress was established at 5 ppm. Translocation factors were low in all cases as the toxic elements accumulated more in the roots of the plant than the edible leaves. The impact of Zn on the uptake of toxic elements was also evaluated and Zn was found to have an antagonistic effect on uptake of both Cd and Pb with no notable effect on uptake of As. The findings indicate that phytotoxicity or death of the watercress plant would prevent it from being a route of human exposure to high concentrations of As, Cd and Pb in the environment.  相似文献   

15.
Coal is one of the major energy resources in China, with nearly half of produced Chinese coal used for power and heat generation. The large use of coal for power and heat generation in China may result in significant atmospheric emissions of toxic volatile trace elements (i.e. F, As, Se, Hg, and Sb). For the purpose of estimating the atmospheric emissions from coal-fired power and heat generation in China, a simple method based on coal consumption, concentration and emission factor of trace element was adopted to calculate the gaseous emissions of elements F, As, Se, Hg, and Sb. Results indicate that about 162 161, 236, 637, 172, and 33 t F, As, Se, Hg, and Sb, respectively, were introduced into atmosphere from coal combustion by power and heat generation in China in 2009. The atmospheric emissions of F, As, Se, Hg, and Sb by power and heat generation increased from 2005 to 2009 with increasing coal consumptions.  相似文献   

16.
Leaching of heavy metals from land-disposed dredged sediment spoils is a potential environmental hazard. The leaching behavior of Cd, Cu, Pb and Zn in surface soils sampled from abandoned dredged sediment disposal sites was assessed. Using simple mass-balance calculations, the significance of the leaching test results with respect to metal migration into underlying clean soil was appraised. The potential leachability, defined as the amounts released at constant pH 4, decreased in the order (% of total contents): Zn (58%) approximately equal to Cd (49%)>Cu (5%) approximately equal to Pb (2%). The kinetics of metal release were determined in a cascade shaking test using de-mineralized water acidified to pH 4 (HNO(3)). Metal concentrations in the leachates were low and metal migration was, assuming uniform convective flow, predicted to be of no environmental concern. It is emphasized that any long-term prediction of metal migration is uncertain.  相似文献   

17.
Trace metal levels in freshwater fish, sediment and water   总被引:1,自引:1,他引:1  
The trace metal concentrations in water, sediment and aquatic organisms, such as fish, could indicate the level and tendency of the pollution. This is important not only for the protection of the environment, but for evaluation of the quality of fish meat either captured from natural waters or cultured in fishponds. The total trace metal concentrations in samples of fish from different regions of Hungary and from different species have been determined by using an X-ray fluorescence technique (EDXRF). Water, sediment and fish samples from fishpond systems with different feeding and stocking has also been analyzed. In the case of zinc contents, differences have been traced between the cultured and wild common carp. In the case of common carp reared under different feeding conditions, differences were also observed in the zinc concentration. The retention of the trace metals in the fish has been studied by measuring the levels in sediment, water and feed. The different retention can be explained by the different availability of zinc in the applied feeds, which can be related to the presence of different metal species in the feeds.  相似文献   

18.
聊城市城区河湖水中Hg、As浓度分布特征及健康风险评价   总被引:1,自引:0,他引:1  
为了解聊城市城区河湖水中Hg、As浓度分布,于2010年12月19日采集、分析了20个表层水样中Hg、As浓度,并采用美国环境保护署推荐的健康风险评价模型对其进行了初步评价.结果表明:城区河湖水中Hg、As的质量浓度分别为0.016~0.366、0.494~23.438 μg/L,各主要河湖水中Hg的平均浓度大小为周公河>东昌湖>小运河>徒骇河;As的平均浓度大小为周公河>徒骇河>小运河>东昌湖;东昌湖Hg浓度超过《地表水环境质量标准》(GB 3838-2002)的Ⅲ类水标准值,超标率为71.4%.各主要河湖水中Hg、As浓度的空间分布差异显著,Hg主要来源于大气沉降和沿岸生活污水的排放,As主要来源于工业废水,两者均受到上游来水的影响.As通过饮水途径产生的健康风险值在10-6~10-4 a-1,是Hg的103~106倍,高于部分机构推荐的最大可接受风险水平(1.0×10-6 a-1).建议有关部门应加强对聊城市城区河湖水中Hg、As的监测和环境风险管理.  相似文献   

19.
Synthetic musks are ubiquitous pollutants in aquatic environments. As hydrophobic chemicals, they can accumulate in terrestrial and aquatic organisms. Investigations into the bioaccumulation of these chemicals in aquatic ecosystem have, however, been limited, and previous results were inconsistent among species and ecosystem. Studies on this topic have been carried out in European countries, the USA, and Japan, but very few are known of the situation in China. The aim of this study was to investigate contaminant levels of musks in fish from Taihu Lake, the second largest freshwater lake in China, as well as bioaccumulation and biomagnification of the pollutants in the freshwater food chain. Five polycyclic musks and two nitro musks were determined in 24 fish species and nine surface sediment samples from Taihu Lake. HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[γ]-2-benzopyran) and AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene) were the predominant contaminants in the fish samples, with concentrations ranging from below the limit of detection (LOD) to 52.9 and from <LOD to 7.5 ng/g lipid weight, respectively. Other contaminants were at low detection frequencies. The results indicated low concentrations of musks yet widespread occurrence of these contaminants in fish from Taihu Lake. Species-specific and lipid-related bioaccumulation characteristics were suggested, but no significant region-specific differences were observed. Normalized biota-sediment accumulation factors for HHCB and AHTN were noted to increase with trophic levels in fish. Trophic magnification factors were estimated at 1.12 for HHCB and 0.74 for AHTN. A biomagnification for HHCB, and probably biodilution for AHTN, in the freshwater food chain are indicated, when trophic magnification factors were concerned. However, the correlations between logarithmic concentrations of the chemicals and trophic levels were not statistically significant. Further study using long food chains in this lake is still needed.  相似文献   

20.
Zheng RL  Cai C  Liang JH  Huang Q  Chen Z  Huang YZ  Arp HP  Sun GX 《Chemosphere》2012,89(7):856-862
A historically multi-metal contaminated soil was amended with biochars produced from different parts of rice plants (straw, husk and bran) to investigate how biochar can influence the mobility of Cd, Zn, Pb and As in rice seedlings (Oryza sativa L.). Rice shoot concentrations of Cd, Zn and Pb decreased by up to 98%, 83% and 72%, respectively, due to biochar amendment, though that of As increased by up to 327%. Biochar amendments significantly decreased pore water concentrations (Cpw) of Cd and Zn and increased that of As. For Pb it depended on the amendment. Porewater pH, dissolved organic carbon, dissolved phosphorus, silicon in pore water and iron plaque formation on root surfaces all increased significantly after the amendments. The proportions of Cd and Pb in iron plaque increased by factors 1.8-5.7 and 1.4-2.8, respectively; no increase was observed for As and Zn. Straw-char application significantly and noticeably decreased the plant transfer coefficients of Cd and Pb. This study, the first to investigate changes in metal mobility and iron plaque formation in rice plants due to amending a historically contaminated soil with biochar, indicates that biochar has a potential to decrease Cd, Zn and Pb accumulations in rice shoot but increase that of As. The main cause is likely biochar decreasing the Cpw of Cd and Zn, increasing the Cpw of As, and increasing the iron plaque blocking capacity for Cd and Pb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号