首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil organic matter (SOM) releasing with dissolved organic matter (DOM) formed in solution was confirmed in a sediment/water system, and the effects of SOM releasing on the sorption of phenanthrene on sediments were investigated. Inorganic salt (0–0.1 mol L?1 NaCl) was used to adjust SOM releasing, and two sediments were prepared, the raw sediment (S1) from Weihe River, Shann’xi, China, and the eluted sediments with and without DOM supernatant remained, termed as S2a and S2b, respectively. The FTIR and 1H NMR analysis indicate that the low molecular weight hydrophilic SOM fraction released prior to the high molecular weight hydrophobic fraction. As a response, phenanthrene sorption kinetics on S1 showed atypical and expressed as three stages: rapid sorption, pseudo sorption with partial desorption, and slow sorption, thus a defined “sorption valley” occurred in kinetic curve. In all cases, partition dominates the sorption, and sorption capacity (Kd) ranked as S2b > S1 > S2a. Compared with the alterations of sediment characters, DOM solubilization produced by SOM releasing exhibited a greater inhibitory effect on sorption with a relative contribution of 0.67. Distribution coefficients (Kdoc) of PHE into DOM clusters were 2.10?×?104–4.18?×?104 L kg?1, however a threshold concentration of 6.83 mg L?1 existed in DOM solubilization. The study results will help to clarify PAHs transport and their biological fate in a sediment/water system.  相似文献   

2.
Effect of physical forms of soil organic matter on phenanthrene sorption   总被引:2,自引:0,他引:2  
Pan B  Xing B  Tao S  Liu W  Lin X  Xiao Y  Dai H  Zhang X  Zhang Y  Yuan H 《Chemosphere》2007,68(7):1262-1269
The sorption coefficient, K(OC), of phenanthrene (PHE) has been reported to vary with different types of organic matter, leading to uncertainties in predicting the environmental behavior of PHE. Among the studies that relate organic matter properties to their sorption characteristics, physical conformation of organic matter is often neglected. In this work, organic matter samples of different physical forms were examined for their sorption characteristics. Dissolved humic acids (DHA) showed significantly higher K(OC) than the corresponding solid humic acids (SHA) from which the DHAs were made. The K(OC) of DHAs was found to be related to polarity, whereas K(OC) of SHAs increased with aliphatic carbon content. Soil particles were treated with H(2)O(2) to remove organic matter, and humic acid was coated on H(2)O(2)-treated soil particles to make organo-mineral complexes at pH 4, 7 and 10. Although the nonlinear sorption was apparent for SHAs and H(2)O(2)-treated soil particles, the organo-mineral complexes formed using these two components at pH 4, 7 and 10 exhibited relatively linear sorption at organic carbon content, f(OC)>0.5%. These results indicate that organic matter of the same composition may have different sorption properties due to different physical forms (or conformations). Nonlinear sorption for the complexes formed at pH 4 with lower f(OC) (<0.5%) was also discussed.  相似文献   

3.
Atrazine and phenanthrene (Phen) sorption by nonhydrolyzable carbon (NHC), black carbon (BC), humic acid (HA) and whole sediment and soil samples was examined. Atrazine sorption isotherms were nearly linear. The single-point organic carbon (OC)-normalized distribution coefficients (KOC) of atrazine for the isolated HA1, NHC1 and BC1 from sediment 1 (ST1) were 36, 550, and 1470 times greater than that of ST1, respectively, indicating the importance of sediment organic matter, particularly the condensed fractions (NHC and BC). Similar sorption capacity of atrazine and Phen by NHC but different isotherm nonlinearity indicated different sorption domains due to their different structure and hydrophobicity. The positive relationship between (O + N)/C ratios of NHC and atrazine log KOC at low concentration suggests H-bonding interactions. This study shows that sediment is probably a less effective sorbent for atrazine than Phen, implying that atrazine applied in sediments or soils may be likely to leach into groundwater.  相似文献   

4.
Evaluation of impacts of soil fractions on phenanthrene sorption   总被引:3,自引:0,他引:3  
Luo L  Zhang S  Ma Y 《Chemosphere》2008,72(6):891-896
Phenanthrene sorption to soils and soil fractions was investigated using two contrasting soils with different clay mineral and organic carbon (OC) contents in an attempt to evaluate the contribution of each soil fraction to phenanthrene sorption and the applicability of the carbon-normalized distribution constant (K(OC)) in soils. Sorbents were characterized using surface analysis, solid-state (13)C NMR analysis, and glass transition temperature (T(g)) analysis to gain a insight into the chemical nature of OC in soils. Dissolved organic carbon (DOC) in the soil solution impeded the phenanthrene sorption, while humins accounted for the predominant phenanthrene sorption in soils. The contribution of OC to phenanthrene sorption in soil would be overestimated if only a K(OC)-approach was adopted, since clay minerals could account for much of the sorption, especially when OC was low in soils. Nitrogen gas was shown to be inappropriate for probing non-polar sorption capacity. The results obtained highlight the importance of clay minerals in governing the sorption of phenanthrene in soil, and emphasize the inapplicability of the carbon-normalized distribution coefficient K(OC) in soils.  相似文献   

5.
Even though it is well established that soil C content is the primary determinant of the sorption affinity of soils for non-ionic compounds, it is also clear that organic carbon-normalized sorption coefficients (K(OC)) vary considerably between soils. Two factors that may contribute to K(OC) variability are variations in organic matter chemistry between soils and interactions between organic matter and soil minerals. Here, we quantify these effects for two non-ionic sorbates-diuron and phenanthrene. The effect of organic matter-mineral interactions were evaluated by comparing K(OC) for demineralized (HF-treated) soils, with K(OC) for the corresponding whole soils. For diuron and phenanthrene, average ratios of K(OC) of the HF-treated soils to K(OC) of the whole soils were 2.5 and 2.3, respectively, indicating a substantial depression of K(OC) due to the presence of minerals in the whole soils. The effect of organic matter chemistry was determined by correlating K(OC) against distributions of C types determined using solid-state (13)C NMR spectroscopy. For diuron, K(OC) was positively correlated with aryl C and negatively correlated with O-alkyl C, for both whole and HF-treated soils, whereas for phenanthrene, these correlations were only present for the HF-treated soils. We suggest that the lack of a clear effect of organic matter chemistry on whole soil K(OC) for phenanthrene is due to an over-riding influence of organic matter-mineral interactions in this case. This hypothesis is supported by a correlation between the increase in K(OC) on HF-treatment and the soil clay content for phenanthrene, but not for diuron.  相似文献   

6.
The use of a reference compound to quantify the sorption of nonpolar organic chemicals is proposed. This is because organic carbon normalized sorption coefficients (KOC) do appear to be dependent on the type of sediment, and are thus not generally applicable to characterize the sorption properties of chemicals. Therefore, in this paper the hypothesis that nonpolar chemicals sorb in a constant ratio, independent of the sediment, has been investigated. Evidence for this hypothesis is shown with data from the literature. This enables one to compare sorption properties of nonpolar compounds on different sediments, if the differences between the sediments are normalized with a reference chemical rather than with the organic carbon content. Sediments with an organic carbon content of less than 0.1% seem to be unsuitable, because the compounds do not sorb mainly on the organic carbon, but also on other parts of the sediment. Sorption coefficients of compounds with aqueous solubilities in the μg per liter range or octan-1-ol water partition coefficients of more than 105 are strongly influenced by the experimental techniques used. For these compounds the sorption coefficients measured by different techniques are less comparable. To enable comparison of sorption coefficients of hydrophobic chemicals, the use of a chlorobenzene as a reference compound in sorption experiments is suggested.  相似文献   

7.
To better understand interaction mechanisms of pine needles with persistent organic pollutants, single-solute and bi-solute sorption of phenanthrene and pyrene onto isolated cuticular fractions of pine needle were investigated. The structures of cuticular fractions were characterized by elemental analysis, Fourier transform infrared spectroscopy and solid-state 13C NMR. Polymeric lipids (cutin and cutan) exhibited notably higher sorption capabilities than the soluble lipids (waxes), while cellulose showed little affinity with sorbates. With the coexistence of the amorphous cellulose, the sorption of cutan (aromatic core) was completely inhibited, so the cutin components (nonpolar aliphatic moieties) dominated the sorption of bulk needle cuticle. By the consumption of the amorphous cellulose under acid hydrolysis, sorption capacities of the de-sugared fractions were dramatically enhanced, which controlled by the exposed aromatic cores and the aliphatic moieties. Furthermore, the de-sugared fractions demonstrated nonlinear and competitive sorption due to the specific interaction between aromatic cores and polycyclic aromatic hydrocarbon.  相似文献   

8.
A study was conducted to screen the three passes that link Lake Pontchartrain to the Gulf of Mexico via Lake Borne for the presence of EPA base-neutral (BN) priority pollutants and any other pollutants detected in significant concentration. Biota and sediment samples were collected and analytical procedures were developed for the trace analysis of BN organics in these matrices. Compounds identified include alkanes (normal, branched, cyclic), alkenes, aromatics, alkylated aromatics, polynuclear aromatic hydrocarbons and their alkylated derivatives, phthalates, ketones, furans, thiophenes, phenols, amines, nitriles, thiazoles, amides, aldehydes, alcohols, free fatty acids, fatty acid methyl and ethyl esters, phosphates, sterols. Concentrations were in the parts-per-billion range.  相似文献   

9.
Sorption characteristics of phenanthrene (PHE) were studied on eight soils with organic carbon contents spanning over an order of magnitude using phase distribution relationships (PDRs) at 1 h, 48 h, and 720 h contact times. A new algebraic method was employed to describe the sorption characteristics at different time intervals (between 1 h and 48 h, and 1 h and 720 h). It was found that nonlinearity increased with increasing contact time and sorption that occurred in the subsequent time interval following the initial 1 h exhibited stronger isotherm nonlinearity. Sorption coefficients were positively correlated with the organic carbon contents of the soils. Detailed sorption dynamics were also examined on these soils. A two-compartment, first-order model was used to describe the sorption dynamics. The rate constants of the two compartments differed 18-170 times, suggesting the dissimilar sorption behaviors of the mathematically separated compartments. These two compartments were labeled fast and slow sorption compartment according to the rate constants. Calculation showed that the fast compartment accounted for over 80% of the overall sorption at the initial 1 h, while the slow compartment predominated the total sorption in the following 47 h. By combining the discussion of PDRs and sorption dynamics, the contributions of the two compartments to linear and nonlinear sorption were differentiated. The slow sorption compartment made a major contribution to nonlinear sorption and possibly to sequestration of organic pollutants by these soils.  相似文献   

10.
Characterization of water extractable organic matter in a deep soil profile   总被引:5,自引:0,他引:5  
The aim of this study was to identify qualitative and quantitative differences of water extractable organic matter (WEOM) isolated from each horizon along a deep soil profile and to evaluate any relationship between the WEOC and the total organic carbon (TOC) content. The soil profile "Monte Pietroso" is located in the Murge area, Apulia region in Southern Italy. Samples from the eight horizons (Ap1, Ap2, Ab1, Ab2, Bt1, 2B, 2Bt2, and 2B/C) were collected in October 2002. The WEOM characterization was carried out by means of UV absorbance, fluorescence spectroscopy in the emission and excitation/emission matrix (EEM) modes, and additional spectroscopic derived indexes. Soil organic carbon was shown to accumulate in the top horizons (Ap) and, in general, to decrease with depth, whereas, the WEOM/TOC ratio increases with increasing depth. The aromaticity and the humification index of the WEOM decrease dramatically downward the soil profile, whereas the fluorescence efficiency index tends to increase markedly. The WEOM fractions feature three main fluorophores with different wavelength and relative intensity. In general WEOM transport phenomena are suggested to occur downward the soil profile, depending on the nature of the organic material and on the chemical and mineral characteristics of the various horizons.  相似文献   

11.
Incorporation of organic fertilizers/amendments has been, and continues to be, a popular strategy for golf course turfgrass management. Dissolved organic matter (DOM) derived from these organic materials may, however, facilitate organic chemical movement through soils. A batch equilibrium technique was used to evaluate the effects of organic fertilizer-derived DOM on sorption of three organic chemicals (2,4-D, naphthalene and chlorpyrifos) in USGA (United States Golf Association) sand, a mixed soil (70% USGA sand and 30% native soil) and a silt loam soil (Typic Fragiochrept). DOM was extracted from two commercial organic fertilizers. Column leaching experiments were also performed using USGA sand. Sorption experiments showed that sorption capacity was significantly reduced with increasing DOM concentration in solution for all three chemicals. Column experimental results were consistent with batch equilibrium data. These results suggest that organic fertilizer-derived DOM might lead to enhanced transport of applied chemicals in turf soils.  相似文献   

12.
Samples of total suspended paniculate matter were collected in March and August 1979 at Barrow, Alaska, a remote site in the Arctic. Ambient concentrations of extractable paniculate organic matter (POM), of polycyclic aromatic hydrocarbons (PAH) and of 210Pb were determined. The samples were also examined by optical and scanning electron microscopy. Average concentrations of POM and PAH were similar to those reported for other remote sites in the northern hemisphere, but the concentrations were considerably higher in March than in August. The presence of fly ash in the samples collected during the March sampling period, as well as seasonal differences in the concentrations of the organic species and 210Pb and in meteorology indicate that the principal source of POM and PAH was fossil fuel combustion in the mid-latitudes during the March sampling period.  相似文献   

13.
Fluorescence spectroscopic studies of natural organic matter fractions   总被引:31,自引:0,他引:31  
Chen J  LeBoeuf EJ  Dai S  Gu B 《Chemosphere》2003,50(5):639-647
Because of the well-known molecular complexity and heterogeneity of natural organic matter (NOM), an aquatic bulk NOM was fractionated into well-defined polyphenolic-rich and carbohydrate-rich subfractions. These fractions were systematically characterized by fluorescence emission, three dimensional excitation-emission matrices, and synchronous-scan excitation spectroscopy in comparison with those of the reference International Humic Substances Society soil humic acid and Suwannee River fulvic acid. Results indicate that fluorescence spectroscopy can be useful to qualitatively differentiate not only NOM compounds from varying origins but also NOM subcomponents with varying compositions and functional properties. The polyphenolic-rich NOM-PP fraction exhibited a much more intense fluorescence and a red shift of peak position in comparison with the carbohydrate-rich NOM-CH fraction. Results also indicate that synchronous excitation spectra were able to provide improved peak resolution and structural signatures such as peak positioning, shift, and intensity among various NOM components as compared with those of the emission and excitation spectra. In particular, the synchronous spectral peak intensity and its red shift in the region of about 450-480 nm may be used to indicate the presence or absence of high molecular weight and polycondensed humic organic components, or the multicomponent nature of NOM or NOM subcomponents.  相似文献   

14.
Ding G  Rice JA 《Chemosphere》2011,84(4):519-526
The chemical composition and physical conformation of natural organic matter (NOM) play a major role in regulating its capacity to retain hydrophobic organic compounds. Naphthalene and phenanthrene were used to study the correlations between sorption/desorption isotherm nonlinearity and compositional data obtained from quantitative 13C solid-state DPMAS NMR spectroscopy for soil and peat organic matter with or without lipids. Sorption experiments were conducted using a batch equilibration method. Desorption experiments were carried out immediately following the sorption experiments by three successive decant-refill cycles. Hysteresis was observed in all samples. Nonlinear sorption behavior was increased by removal of lipids from the NOM. The hysteresis index, obtained from the ratio of the Freundlich exponents (N values) for the desorption and sorption isotherms, was lower in the lipid-extracted NOM samples than in the same samples without lipid extraction. The relationship between the extent of hysteresis and the characteristics of the 13C DPMAS NMR spectra indicates that altering NOM composition through lipid extraction not only increased the proportion of aromatic-C content, but also increased sorption/desorption hysteresis. Our data also suggest that the hysteresis index is negatively related to aromaticity.  相似文献   

15.
We have characterised two kinds of municipal landfill leachates derived from 'old' and 'young' municipal waste landfills on the basis of the molecular weight distribution of the constituents, taking into account that the great variety of leachate constituents prevents any evaluation of the fate and of the role played by each component in the environmental impact. In the sample S1 (old leachate), the constituents were distributed over a wider range of molecular weights; high molecular weight fractions were present. In sample S2 (young leachate), the fractions are actually narrower at the lower molecular weights. The high molecular weight fractions of old leachates are found to be complex structures formed by condensed nuclei of carbons substituted by functional groups containing nitrogen, sulphur and oxygen atoms; the low molecular weight fractions of leachates are, instead, characterised by linear chains substituted by oxygenated functional groups such as carboxyl and/or alcoholic groups. After characterising each fraction we studied the role played by these fractions in the soil's capability for retaining heavy metals [copper (Cu) and cadmium(Cd)]. The Cd uptake increases only on the soil treated with sample S1 characterised by a higher pH value and by the presence of high molecular weight fractions. The Cu uptake also increases on the soil treated with sample S2, characterised by the sole presence of low molecular weight fractions. On the other hand, the metal adsorption tests performed on soil treated with the single fractions show that the amount of Cu and Cd retained by soil treated with the high molecular weight fractions of sample does not increase after 72 h of treatment and that the amount of Cu retained by the low molecular weight fractions of sample S1 and by the fractions of sample S2 increases, but does not justify the amount retained by soil treated with the total leachates.  相似文献   

16.
Krauss M  Wilcke W 《Chemosphere》2005,59(10):1507-1515
The sorption strength of persistent organic pollutants in soils may vary among different soil organic matter (SOM) pools. We hypothesized that polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were unevenly distributed and had different soil organic carbon (SOC)-water partition coefficients (K(OC)) among soil density fractions. We determined the concentrations and K(OC) values of 20 PAHs and 12 PCBs in bulk samples and three density fractions (light, <2.0, medium, 2.0-2.4, and heavy, >2.4 g cm(-3)) of 11 urban topsoils (0-5 cm) from Bayreuth, Germany. The K(OC) values were determined using sequential extraction with methanol-water mixtures (35% and 65% methanol) at 60 degrees C. The sum of 20 PAH concentrations in bulk soil ranged 0.4-186 mg kg(-1), and that of 12 PCB concentrations 1.2-158 microg kg(-1). The concentrations of all PAHs and PCBs decreased in the order light>medium>heavy fraction. When normalized to the SOC concentrations, PAH concentrations were significantly higher in the heavy than in the other density fractions. The K(OC) values of the PAHs in density fractions were 3-20 times higher than those of the PCBs with similar octanol-water partition coefficients (K(OW)). The K(OC) values of individual PAHs and PCBs varied up to a factor of 1000 among the studied soils and density fractions. The K(OC) values of 5- and 6-ring PAHs tended to be highest in the heavy fraction, coinciding with their enrichment in this fraction. For the other PAHs and all PCBs, the K(OC) values did not differ among the density fractions. Thus, there is no relationship between sorption strength and distribution among density fractions, indicating that density fractionation is not a suitable tool to distinguish among differently reactive PAH and PCB pools in soils.  相似文献   

17.
Atmospheric particulate matter (PM10) was collected simultaneously at three sites in the West Coast of Portugal, during an intensive campaign in August 1996. The sites were located in line with the breezes blowing from the sea. The collected aerosol was analysed in relation to black and organic carbon content. The particulate organic matter was extracted with solvents and characterised by gas chromatography and mass spectrometry (GC–MS). Most of the organic mass identified consists of alkanes, polycyclic aromatic hydrocarbons (PAH), ketones, aldehydes, alcohols and fatty acids with both biogenic and anthropogenic origin. Many photochemical products from volatile organic compounds emitted by vegetation were also detected. Biomarkers such as 6,10,14-trimethylpentadecanone, abieta-8,11,13-trien-7-one and Patchouli alcohol were observed at higher concentrations in the rural sites. Samples from the urban site present lower values of “carbon preference index” and higher concentrations of petrogenic/pyrogenic species, such as PAH. The PM10 concentrations and the total organic extract measured for the more interior site were generally lower, indicating that dispersion and dry deposition into the forest canopy were more important during the transport of the air masses than aerosol production by condensation and photochemical reactions. On the contrary, the ratio between organic and black carbon was, in general, lower at sites near the coast, especially for compounds that evaporate at lower temperatures. The organic aerosol composition also seems to be strongly dependent on the meteorology.  相似文献   

18.
Fractions of soil organic matter in a natural soil were extracted and sorption (or binding) characteristics of phenanthrene on each fraction and to the whole sample were investigated. The organic carbon normalized single point sorption (or binding) coefficient followed lipid > humin (HM) > humic acid (HA) > fulvic acid (FA) > whole soil sample, while the nonlinear exponent exhibited lipid > FA > HA > whole soil sample > HM. FA showed nonlinear binding of phenanthrene as it often does with other fractions. HM and HA contributed the majority of organic carbon in the soil. The calculated sorption coefficients of the whole soil were about two times greater than the measured values at different equilibrium phenanthrene concentrations. As for phenanthrene, the sorption capacity and nonlinearity of the physically mixed HA-HM mixtures were stronger as compared to the chemically reconstituted HA-HM composite. This was attributed to (besides the conditioning effect of the organic solvents) interactions between HA and HM and acid-base additions during fractionation.  相似文献   

19.
The nature of the influence of organic matter (OM) on ammonium adsorption in lake sediments remains disputed. In this study, the kinetics and thermodynamics of ammonium adsorption were investigated on sediment samples with different OM contents (ignoring the effects of OM mineralization) previously collected from Lake Wuli, a northern bay of Lake Taihu, a shallow lake in southern China. The mechanisms of ammonium adsorption in these samples were characterized by Fourier transform infrared spectrometry and scanning electron microscopy. The results show that the ammonium adsorption capacity of the sediments is highly correlated with their OM content and with the humic content of the OM. The ammonium adsorption capacity of OM varies with its composition, i.e., with the surface properties of the different functional groups present. Indeed, humic acid was found to have a greater ammonium adsorption capacity by itself than when mixed with kerogen and black carbon, the mixture of the latter two components proving a better adsorbent than pure black carbon.  相似文献   

20.
He X  Xi B  Wei Z  Guo X  Li M  An D  Liu H 《Chemosphere》2011,82(4):541-548
This paper aims to characterize the evolution of water extractable organic matter (WEOM) during the composting of municipal solid waste (MSW), and investigate the correlation between maturity and WEOM characteristics. WEOM was extracted at different stages of MSW composting (0, 7, 14, 21, and 51 d) and characterized by FTIR, UV-Vis, and fluorescence spectroscopy. The results obtained show that the composting process decreased aliphatics, alcohols, polysaccharides, as well as protein-like materials, and increased aromatic polycondensation, humification, oxygen-containing functional groups, molecular weight, and humic-like materials. The maturity of MSW during composting was characterized by the presence of the peak with an excitation/emission wavelength pair of 289/421 nm in excitation-emission matrix spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号