首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to examine the variation of time and space and the effects of alpine meadow desertification, and the study area was selected at the Qinghai–Tibet Plateau of China. The sampling locations were categorized as the top, middle, bottom of the slope and flat in front of the slope, and the sites were classified as alpine meadow, light desertified land, moderate desertified land, serious desertified land, and very serious desertified land according to the level of alpine meadow desertification. This study examined spatial and temporal variability in soil organic carbon (SOC), total nitrogen (TN), pH, and soil bulk density due to wind erosion and documents the relationship between soil properties and desertification of alpine meadows. Desertification caused decreases to soil organic carbon and total nitrogen and increases to pH and soil bulk density. Soil properties were greatly affected by the level of alpine meadow desertification with the changes being attributed to overgrazing. The middle portion of slopes was identified as being the most susceptible to desertification. Carbon and nitrogen stocks were found to decrease as desertification progressed, the SOC stocks were 274.70, 273.81, 285.26, 196.20, and 144.36 g m?2 in the alpine meadow, light desertified land, moderate desertified land, serious desertified land and very serious desertified land, respectively; and the TN stocks were 27.23, 27.11, 28.35, 20.97, and 17.09 g m?2 at the top 30 cm soil layer, respectively. To alleviate desertification of alpine meadow, conservative grazing practices should be implemented.  相似文献   

2.
3.
4.
Assessing the global C budget requires a better understanding of the effect of environmental factors on soil CO2 efflux from both experiments and theoretical research, especially in different desertified lands in the Qinghai–Tibet Plateau. Based on the enclosed chamber method, soil CO2 efflux in four different desertified lands and one control [alpine meadow (AM)] were measured in June, August and September, 2008, respectively. Soil CO2 efflux rates at the top, the middle, the bottom of a slope and the flat in front of the slope were obtained at Maduo County. The results showed that average daily soil CO2 efflux rates were 3.72, 2.65, 2.68, 0.59 and 0.37 g m−2 day−1 in the AM, lightly (LDL), moderately (MDL), severely (SDL) and very severely desertified lands (VSDL) during the growing season, respectively. Soil CO2 efflux decreased with the change of desertification. The response of soil CO2 efflux to environmental factors was adequately described by the linear model; models accounted for 76, 65, 72, 59 and 71% of the variability on soil CO2 efflux in the AM, LDL, MDL, SDL and VSDL, respectively. Any environmental factor, however, was insufficient to explain the soil CO2 efflux; the common influence could perfectly reflect soil CO2 efflux response to the desertification change.  相似文献   

5.
We have studied the evolution of the tectonic lithofacies paleogeography of Paleocene–Eocene, Oligocene, Miocene, and Pliocene of the Qinghai–Tibet Plateau by compiling data regarding the type, tectonic setting, and lithostratigraphic sequence of 98 remnant basins in the plateau area. Our results can be summarized as follows. (1) The Paleocene to Eocene is characterized by uplift and erosion in the Songpan–Garzê and Gangdisê belts, depression (lakes and pluvial plains) in eastern Tarim, Qaidam, Qiangtang, and Hoh Xil, and the Neo-Tethys Sea in the western and southern Qinghai–Tibet Plateau. (2) The Oligocene is characterized by uplift in the Gangdisê–Himalaya and Karakorum regions (marked by the absence of sedimentation), fluvial transport (originating eastward and flowing westward) in the Brahmaputra region (marked by the deposition of Dazhuka conglomerate), uplift and erosion in western Kunlun and Songpan–Garzê, and depression (lakes) in the Tarim, Qaidam, Qiangtang, and Hoh Xil. The Oligocene is further characterized by depressional littoral and neritic basins in southwestern Tarim, with marine facies deposition ceasing at the end of the Oligocene. (3) For the Miocene, a widespread regional unconformity (ca. 23 Ma) in and adjacent to the plateau indicates comprehensive uplift of the plateau. This period is characterized by depressions (lakes) in the Tarim, Qaidam, Xining–Nanzhou, Qiangtang, and Hoh Xil. Lacustrine facies deposition expanded to peak in and adjacent to the plateau ca. 18–13 Ma, and north–south fault basins formed in southern Tibet ca. 13–10 Ma. All of these features indicate that the plateau uplifted to its peak and began to collapse. (4) Uplift and erosion occurred during the Pliocene in most parts of the plateau, except in the Hoh Xil–Qiangtang, Tarim, and Qaidam.  相似文献   

6.
The objective of this study was to investigate the effects of diurnal temperature fluctuation amplitude (DTFA) on the geothermal regime of the embankment on the Qinghai–Tibet plateau. The investigation was simulated by respectively denoting the diurnal temperatures at the embankment surface, embankment slope, and natural ground surface with sinusoidal waves. The amplitudes of the waves were denoted by 0°C, 5°C, 8°C, and 12°C, respectively. The numerical result shows that the DTFA cannot vary the frequency of the seasonal temperature fluctuation of the underlying soil, but can significantly change the magnitude of the soil’s temperature. The changes include: (1) The high DTFA, such as 12°C, can significantly lead to the warming of the soil under the embankment. (2) Interestingly, when the DTFA at ground surface is 5°C, the underlying soil is in a cooler stage compared to when such DTFA is 0°C, 8°C, or12°C. This interesting result means that the documented model which ignores the diurnal temperature rhythm overestimates the warming of the underlying soil at the low DTFA region and underestimates such warming at the high DTFA region. This result also suggests that the soil under the embankment can be cooled down if the DTFA on the ground surface was maintained at or approximately at 5°C.  相似文献   

7.
Climate change has greatly influenced the permafrost regions on the Qinghai–Tibet Plateau (QTP). Most general circulation models (GCMs) project that global warming will continue and the amplitude will amplify during the twenty-first century. Climate change has caused extensive degradation of permafrost, including thickening of the active layer, rising of ground temperature, melting of ground ice, expansion of taliks, and disappearance of sporadic permafrost. The changes in the active layer thickness (ALT) greatly impact the energy balance of the land surface, hydrological cycle, ecosystems and engineering infrastructures in the cold regions. ALT is affected by climatic, geographic and geological factors. A model based on Kudryavtsev’s formulas is used to study the potential changes of ALT in the permafrost regions on the QTP. Maps of ALT for the year 2049 and 2099 on the QTP are projected under GCM scenarios. Results indicate that ALT will increase with the rising air temperature. ALT may increase by 0.1–0.7 m for the year 2049 and 0.3–1.2 m for the year 2099. The average increment of ALT is 0.8 m with the largest increment of 1.2 m under the A1F1 scenario and 0.4 m with the largest increment of 0.6 m under the B1 scenario during the twenty-first century. ALT changes significantly in sporadic permafrost regions, while in the continuous permafrost regions of the inland plateau ALT change is relatively smaller. The largest increment of ALT occurs in the northeastern and southwestern plateaus under both scenarios because of higher ground temperatures and lower soil moisture content in these regions.  相似文献   

8.
Understanding the spatial distribution, stocks, and influencing factors of soil organic carbon (SOC) is important for understanding the current situation of SOC in alpine meadow ecosystems on the Qinghai–Tibetan Plateau (QTP). We sampled 23 soil profiles to a depth of 50 cm in a 33.5 hm\(^{2}\) plot in a typical meadow on the central QTP. The distribution, stock and influencing factors of SOC was then analyzed. The mean density of soil carbon content (SOCD) was 2.28 kg m\(^{-2}\) with a range of 5.99 kg  m\(^{-2}\). SOCD in the 0–10 cm layer was 3.94 kg m\(^{-2}\) and decreased quadratically with depth. The total stock of SOC to a depth of 50 cm was ca. 2950 t, the 0–10 and 0–30 cm layers accounting for 38 and 80%, respectively. SOCD varied moderately spatially and was distributed more homogeneously in the 0–10 and 40–50 cm layers but was more variable in the middle three layers. SOCD was significantly correlated positively with soil-water content, total porosity, and silt content and negatively with soil pH, bulk density, stone content and sand content. This study provides an important contribution to understanding the role of alpine meadows in the global carbon cycle. It also provides field data for model simulation and the management of alpine meadow ecosystems.  相似文献   

9.
A reasonable height of embankment is beneficial for maintaining the thermal and mechanical stability of highway in cold regions. This paper firstly introduced theoretical models for two main sources of settlement, including an improved consolidation theory for thawing permafrost and a simple rheological element based creep model for warm frozen soils. A modified numerical method for living calculating thaw consolidation and creep in corresponding domains and for post-processing the proportion of each source in total settlement based on the effective thaw consolidation time. Two typical geological sections underlain by warm permafrost layer were selected from the Qinghai–Tibet highway. The heat transfer and continuing settlement for two sections were modeled by assuming that the height of embankment ranges from 0 to 6.0 m. The reasonable critical height for two sections are 1.63 and 1.35 m, respectively, by comparing maximum thawing depth, mean annual temperature and settlement in the roadbed center. For two sections with design height of embankment, the proportions of thaw consolidation and creep to the total settlement were analyzed. For sections at higher ground temperature, thaw consolidation accounts for a major part while thaw consolidation of section L is a little larger than that of creep.  相似文献   

10.
Based on two-dimensional heat-conduction equations with a phase-change component, this study investigates the impact of underground mining on the permafrost environment in an opencast coal mining pit. The dynamics of the maximum thawed and freezing depths at different depths around a borehole wall are determined. The spatial distributions of these dynamics are also determined at different locations of the wall profile. The results show that (1) the maximum freezing depth tends to increase over 100 years; (2) the maximum thawed depth increases along a borehole wall over 100 years. In particular, the maximum thawed depth increases faster near the junctions of permafrost and seasonally frozen soil; (3) due to the small cross section of mining laneways, coal mining does not cause rapid increases in permafrost temperature around borehole walls. Once disturbance to permafrost around a borehole wall decreases, the once-insignificant effect of temperature will become more obvious. Underground mining does have some impacts on permafrost surrounding borehole walls, but it does not cause large areas of deformation due to thermal disturbance.  相似文献   

11.
In recent years, the desertification of alpine-cold grasslands has become increasingly serious in the Qinghai–Tibet Plateau in China, but it has not received the same amount of attention as has desertification in (semi)arid areas. Little is thus known about the change in soil organic carbon (SOC) during alpine-cold grassland desertification. To quantify the impacts of desertification on vegetation, SOC and its active fractions in alpine-cold grasslands, areas of light desertified grassland, medium desertified grassland, heavy desertified grassland, serious desertified grassland, and nondesertified grassland were selected as experimental sites in the eastern Qinghai–Tibet Plateau in China. The species number, height and coverage of vegetation were surveyed, and the soil particle fractions, SOC and SOC active fractions (including dissolved organic carbon (DOC), microbial biomass carbon (MBC), and labile organic carbon (LOC) were measured to a depth of 0–100 cm. The results showed that alpine-cold grassland desertification resulted in a significant reduction in vegetation cover, plant biomass, fine soil particles, SOC, DOC, LOC and MBC. The decreases in DOC, LOC and MBC were more rapid and apparent than were those in SOC, and the decrease in MBC was the most obvious among them. The rates of reduction in SOC concentrations accelerated as desertification progressed; most of the SOC was lost in the middle and later desertification stages, with lower losses during early desertification. The results indicate that active SOC fractions, particularly MBC, are more sensitive to desertification and can be used as sensitive indicators of desertification. Efforts to limit desertification and reduce SOC loss in alpine-cold grasslands should focus on early desertification stages and adopt strategies to prevent overgrazing and control the erosion of soil by wind.  相似文献   

12.
The increased rate of annual temperature in the Qinghai-Tibetan Plateau exceeded all other areas of the same latitude in recent decades. The influence of the warming climate on the alpine ecosystem of the plateau was distinct. An analysis of alpine vegetation under changes in climatic conditions was conducted in this study. This was done through an examination of vegetation greenness and its relationship with climate variability using the Advanced Very High Resolution Radiometer satellite imagery and climate datasets. Vegetation in the plateau experienced a positive trend in greenness, with 18.0 % of the vegetated areas exhibiting significantly positive trends, which were primarily located in the eastern and southwestern parts of the plateau. In grasslands, 25.8 % of meadows and 14.1 % of steppes exhibited significant upward trends. In contrast, the broadleaf forests experienced a trend of degradation. Temperature, particularly summer temperature, was the primary factor promoting the vegetation growth in the plateau. The wetter and warmer climate in the east contributed to the favorable conditions for vegetation. The alpine meadow was mostly sensitive to temperature, while the steppes were sensitive to both temperature and precipitation. Although a warming climate was expected to be beneficial to vegetation growth in the alpine region, the rising temperature coupled with reduced precipitation in the south did not favor vegetation growth due to low humidity and poor soil moisture conditions.  相似文献   

13.
The regional hydrology and ecosystems of the northeastern margin of the Qinghai–Tibetan Plateau have changed over the past 40 years driven by intense human activity and regional climate changes. Annual mean air temperature has increased in the region. Streamflow from the northeastern margin of the Qinghai–Tibetan Plateau has decreased significantly. Overall, a number of Alpine step meadows and Alpine frigid meadows have seriously degraded. Degeneration of vegetation and grassland led to desertification and frequently induced dust storms. With the continuous increase in cultivated land area, grassland area in the region has dropped significantly since the 1960s. At present, degraded grassland occupies about 83% of total usable grassland area. As the number of livestock increased, range condition deteriorated and the carrying capacity was reduced. The forest area in the northeastern margin of the Qinghai–Tibetan Plateau has decreased by 20%, and the local ecosystem has become very fragile. Given the relatively stable weather conditions, the northeastern margin of the Qinghai–Tibetan Plateau can be characterized by its three major ecosystems: grassland ecosystem, forest ecosystem and wetland ecosystem, which are crucial in maintaining the ecological stability. Changes in these ecosystems could influence sustainable development in the region. To avoid further deterioration of the environment and ecosystems, it is important to establish and implement ecosystem protection planning. Some effective measures are essential in this respect, including technical and political considerations.  相似文献   

14.
15.
Thermokarst lake is a significant indicator of permafrost degradation. However, the evaluation of thermokarst lake development is very difficult through physical mechanism analysis because the development is influenced by many factors. In the present study, the factors influencing thermokarst lake development were investigated from the perspective of frozen soil and the geographical environment. The influences of six factors on thermokarst lake development in Beiluhe basin, located in the hinterland of the Qinghai–Tibet Plateau, were analyzed: permafrost type, ground temperature, vegetation type, soil type, hydrogeological type, and slope. Sensitivity coefficients were calculated for these factors using statistical methods. The results show that thermokarst lake development was influenced by the analyzed factors as follows: permafrost > soil type > ground temperature > hydrogeological type. Furthermore, 80.1% of the study area was highly sensitive to thermokarst lake development. Overall, thermokarst lake development in the Beiluhe basin was thoroughly evaluated based on sensitivity factors and an established statistical evaluation method. The method detailed in this paper provides a reference for evaluating the likelihood and severity of thermokarst lake development.  相似文献   

16.
17.
18.
The stable hydrogen and oxygen of lake, river, rain and snow waters were investigated to understand the water cycle characteristics of the drainage basin of Manasarovar Lake in Tibet. Both δD and δ 18O of river water are larger than those of lake water and the effect of altitude on both δD and δ 18O is not very significant. This phenomenon was suggested to occur because Manasarovar basin is located in Qinghai–Tibet Plateau which has low latitude, high altitude, abundant glaciers, thin air and intensive solar radiation, resulting in higher evaporation in lake water.  相似文献   

19.
The Qinghai–Tibet Plateau is the largest permafrost region at low latitude in the world. Climate warming may lead to permafrost temperature rise, ground ice thawing and permafrost degradation, thus inducing thermal hazards. In this paper, the ARCGIS method is used to calculate the changes of ground ice content and active layer thickness under different climate scenarios on the Qinghai–Tibet Plateau, in the coming decades, thus providing the basis for hazards zonation. The method proposed by Nelson in 2002 was used for hazards zonation after revision, which was based on the changes of active layer thickness and ground ice content. The study shows that permafrost exhibits different degrees of degradation in the different climate scenarios. The thawing of ground ice and the change from low-temperature to high-temperature permafrost were the main permafrost degradation modes. This process, accompanied with thinning permafrost, increases the active layer thickness and the northward movement of the permafrost southern boundary. By 2099, the permafrost area decreases by 46.2, 16.01 and 8.5% under scenarios A2, A1B and B1, respectively. The greatest danger zones are located mainly to the south of the West Kunlun Mountains, the middle of the Qingnan Valley, the southern piedmont of the Gangdise and Nyainqentanglha Mountains and some regions in the southern piedmont of the Himalayas. The Qinghai–Tibet Plateau permafrost region is in the low-risk category. Climate warming exacerbates the development of thermal hazards. In 2099, the permafrost region is mainly in the middle-risk category, and only a small portion is in the low-risk category.  相似文献   

20.
In this paper we present new zircon U–Pb ages, whole-rock major and trace element analyses, and zircon Hf isotopic data for magmatic rocks in the Tuotuohe region of the western segment of the Jinshajiang suture. Our aim is to constrain the Early Permian–Late Triassic tectonic evolution of the region. Zircons from the magmatic rocks of the Tuotuohe region are euhedral–subhedral in shape and display fine-scale oscillatory zoning as well as high Th/U ratios(0.4–4.6), indicating a magmatic origin. The zircon U–Pb ages obtained using LA–ICP–MS are 281 ± 1 Ma, 258 ± 1 Ma, 244 ± 1 Ma, and 216 ± 1 Ma, which indicate magmatism in the Early Permian–Late Triassic. A diorite from Bashihubei(BSHN) has SiO2 = 57.18–59.97 wt%, Al2O3 = 15.70–16.53 wt%, and total alkalis(Na2O + K2O) = 4.46–6.34 wt%, typical of calc-alkaline and metaluminous series. A gabbro from Bashibadaoban(BSBDB) belongs to the alkaline series, and is poor in SiO2(45.46–54.03 wt%) but rich in Al2O3(16.19–17.39 wt%) and total alkalis(Na2O + K2O = 5.48–6.26 wt%). The BSHN diorite and the BSBDB gabbro both display an enrichment of LREEs and LILEs and depletion of HFSEs, and they have no obvious Eu anomaly; they have relatively low MgO contents(2.54–4.93 wt%), Mg# values of 43 to 52, and low Cr and Ni contents(8.07–33.6 ppm and 4.41–14.2 ppm, respectively), indicating they differentiated from primitive mantle magmas. They have low Nb/U, Ta/U, and Ce/Pb ratios(1.3–9.6, 0.2–0.8, and 0.1–18.1, respectively), and their initial Hf isotopic ratios range from +9.6 to +16.9(BSHN diorite) and +6.5 to +12.6(BSBDB gabbro), suggesting their primary magmas were derived mainly from the partial melting of a mantle wedge that had been metasomatized by subduction fluids. Taking all the new data together, we conclude that the western and eastern segment of the Jinshajiang suture regions underwent identical processes of evolution in the Early Permian–Late Triassic: oceanic crust subduction before the Early Permian, continental collision during the Early–Middle Triassic, and post-collisional extension from the Late Triassic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号