首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用非真空熔炼工艺制备Cu-Cr-Zr合金,研究了不同温度下时效时间对合金显微硬度和导电率的影响,并分析了在500℃时效时变形量和合金显微硬度与导电率的关系,用扫描电子显微镜(SEM)观察分析了材料的显微组织。结果表明:非真空熔铸的Cu-0.90Cr-0.18Zr合金950℃×1 h固溶后,经过适当的形变和固溶时效处理,显微硬度和导电率都显著增加,分别达到179 HV和79%IACS。时效后固溶在基体中的合金元素大量析出,析出相弥散分布。  相似文献   

2.
分析了固溶、形变和时效对Cu-0.65Cr-0.35Zr合金性能的影响.结果表明,经固溶处理后施加冷变形,再进行时效处理可获得较高的导电率和硬度.合金经1000℃保温lh水淬,60%的冷变形,500℃时效4~6h,导电率大于75%IACS,硬度大于147 HB;经1000℃保温1h水淬,60%的冷变形,500℃时效2h,导电率72%IACS,硬度163HB,抗拉强度532MPa,断裂伸长率9.2%,当变形量为80%时,其抗拉强度可达585MPa,断裂伸长率16.3%.经该工艺处理后,合金可具有500℃的抗高温软化能力.  相似文献   

3.
多级形变时效对Cu-Cr-Zr合金组织和性能的影响   总被引:2,自引:0,他引:2  
采用力学性能和电导率测试及透射电镜观察等方法,研究了不同时效工艺对Cu-1.0Cr-0.2Zr合金组织和性能的影响.结果表明:合金在一级时效工艺(960℃固溶2h+60%冷变形+450℃时效4h)下有很强的时效强化效应,抗拉强度和屈服强度分别为527.0MPa和487.0MPa,伸长率为12.3%,导电率为82.0%IACS,软化温度为520℃;采用二级时效工艺(960℃固溶2h+60%冷变形+450℃时效4h+60%冷变形+450℃时效5h),合金保持较高的电导率的同时,合金的强度及软化温度得到较大提高,抗拉强度和屈服强度分别为565.4MPa和524.1MPa,伸长率为9.8%,电导率为80.1%IACS,软化温度为560℃.显微组织分析表明,高强度主要来源于预冷变形引起的亚结构强化和弥散相的析出强化.二级时效工艺细化了析出相的尺寸,析出的弥散质点对基体的回复和再结晶阻碍作用强烈,使合金具有很高的软化温度.  相似文献   

4.
Cu-Cr-Zr-Ce合金时效特性的研究   总被引:4,自引:3,他引:4  
研究了时效参数和变形量对Cu-0.35Cr-0.038Zr-0.055Ce合金性能的影响。结果表明:合金经920℃×1h固溶后,在500℃时效2h可获得较高的导电率和硬度;时效前对合金加以冷变形可加速第二相的析出,如合金经60%变形后在500℃时效0.5h时,导电率可达69.0%IACS,显微硬度达152.8HV,而固溶后直接时效导电率仅为56.3%I-ACS,显微硬度为130HV;微量稀土元素Ce的加入,使合金的显微硬度提高了18~25HV,而导电率略有降低。  相似文献   

5.
高性能Cu-Cr-Zr合金接触导线材料的制备与性能   总被引:1,自引:0,他引:1  
采用原位合成法制备Cu-Cr-Zr合金,并对时效试样进行显微硬度、电导率及耐磨性能测试,研究结果表明,80%冷变形处理后最大电导率比初始电导率提高约一倍,变形量越大,合金的电导率越高,冷加工态的试样在500℃以下时效处理时,对导电率的影响十分明显,而对硬度的影响较小.合金材料的磨损试验表明,不带电磨损的机制主要为粘着磨损,带电情况下磨损机制主要为磨粒磨损.  相似文献   

6.
研究了冷变形/时效处理对引线框架用Cu-Ni-Si-Mg合金金相组织、显微硬度及电导率的影响。结果表明:Cu-Ni-Si-Mg合金固溶后经冷轧变形,其等轴晶组织随变形量的增大,晶粒沿变形方向逐渐伸长,变形量越大,则伸长越显著,当变形量很大时,其组织呈纤维状;经形变处理后在相同温度条件下进行时效处理,时效初期显微硬度和电导率快速上升,随后到达峰值后并缓慢下降;Cu-Ni-Si-Mg合金固溶后经80%变形并在450℃时效6h后可得到良好的综合性能,此时显微硬度为305HV,电导率为36%IACS。  相似文献   

7.
时效对列车接触网导线用Cu-Ag-Zr合金性能的影响   总被引:1,自引:0,他引:1  
研究了时效参数对Cu-0.1Ag-0.051Zr合金性能的影响。结果表明:合金经870℃×1h固溶后,在560℃时效可获得较高的导电率;而在480℃时效可获得较高的显微硬度;时效前加以冷变形可以加速时效初期第二相的析出,使合金的导电性显著增加,合金经50%变形后480℃时效0.25h时,导电率可达90.2%IACS,而固溶后直接时效为83.2%IACS;经适当加工工艺成形的合金导线的综合性能优于Cu-0.1Ag合金导线。  相似文献   

8.
采用拉伸力学性能测试、电导率测定和透射电镜分析等试验方法,研究双级时效处理对Cu-Cr-Zr合金微观组织与性能的影响。结果表明:Cu-Cr-Zr合金较为理想的双级时效工艺为350℃,15min+470℃,60min,在此工艺条件下,合金的抗拉强度和屈服强度分别达到535.0和510.0MPa,电导率为87.0%IACS。对于先低温后高温的双级时效制度,合金在350℃低温时效时溶质原子在空位、位错等缺陷处富集形成GP区,为高温时效析出相提供形核核心,在470℃高温时效后基体中析出大量弥散分布的细小颗粒状强化相,在提高了合金强度的同时,电导率也获得大幅度的升高。  相似文献   

9.
研究了时效温度和时效时间对Cu-Ni-Si-P合金组织和性能的影响。结果表明:合金先经900℃固溶,再经不同冷变形后时效,当变形量为80%、时效温度达到450℃、时效2 h后,其显微硬度达到220 HV,导电率达到41%IACS,与未经预冷变形的合金时效相比,合金能获得较高的显微硬度与导电率。Cu-Ni-Si-P合金在较短时间时效时,析出相细小弥散分布。利用高分辨技术观察该合金在450℃时效48 h的析出相形貌,通过计算发现:析出相与基体之间保持着良好的共格关系,并通过对其进行标定,发现析出相为Ni2Si和Ni3P。  相似文献   

10.
La,Fe(或Co)/Ti对Cu-Cr-Zr合金时效特性的影响   总被引:10,自引:0,他引:10  
研制了新型集成电路引线框架Cu-Cr-Zr系列合金,通过电导率、硬度、抗拉强度测试以及透射电镜观察,考察了微量合金元素La,Fe/Ti,Co/Ti元素以及时效工艺对合金性能的影响。结果表明:稀土元素La可以改善A合金(Cu-Cr-Zr-Zn)的硬度及导电率;加入Fe/Ti,Co/Ti元素,大大提高了合金的强度和硬度,并使其时效的强度及硬度峰值延后。在970℃固溶处理、70%冷变形及不同温度时效2h后,A合金(Cu-Cr-Zr-Zn)及B合金(Cu-Cr-Zr-Zn-La)在450℃时达到硬度和强度峰值,分别为HV1770MPa和525MPa及HV1840MPa和554MPa,电导率分别为78%和80%IACS;在970℃固溶处理,60%冷变形,500℃时效2h,50%冷变形及不同温度2次时效2h后,C合金(Cu-Cr-Zr-Zn-Fe-Ti-La)及D合金(Cu-Cr-Zr-Zn-Co-Ti-La)在450℃时达到硬度和强度峰值,分别为HV2120MPa,683MPa及HV2040MPa和651MPa,电导率分别为65%和70%IACS。  相似文献   

11.
对两种不同Cr含量的合金Cu-0.43Cr-0.058Zr-0.031Y和Cu-0.20Cr-0.066Zr-0.060Y,在900—980℃进行了固溶处理,并对显微硬度和电导率进行了测试,对固溶态金相组织进行了观察。结果表明,Cr含量较高的Cu-0.43Cr-0.058Zr-0.031Y合金的固溶处理温度可采用960℃,而Cr含量较低的Cu-0.20Cr-0.066Zr-0.060Y合金为920℃。两种合金固溶后分别在400—520℃进行时效,其电导率和显微硬度的测试对比结果表明,Cr含量较高的合金在较低温度(400℃)时效后的电导率比Cr含量较低合金的低,而较高温度(480℃)时效后Cr含量对电导率的影响不明显;Cr含量对合金显微硬度的影响较大,不同时效温度处理后,Cr含量高的合金硬度均明显低于低Cr含量合金。  相似文献   

12.
Cu-Ag-Cr合金时效特性的研究   总被引:3,自引:0,他引:3  
研究了时效参数和变形量对Cu-0.1Ag-0.46Cr合金性能的影响.结果表明:合金经940℃×20min固溶后,在520℃时效1h可获得较高的电导率和硬度.时效前对合金加以冷变形可以显著提高其显微硬度,合金经60%变形后在480℃时效30min时,峰值硬度可达146.71HV,电导率可达52.9MS/m,而固溶后直接时效分别仅为123.59HV和46MS/m.而合金固溶后淬入650℃碱浴中保温20s可使合金的显微硬度和电导率均有所提高.  相似文献   

13.
通过添加微量的Mg、RE和B、RE,熔铸了两组不同Cu-Cr—Zr合金.采用X荧光分析仪、显微电镜、能谱及X射线衍射仪等进行成分分析、组织和性能的比较与研究。结果表明,添加微量的Mg、RE的Cu—Cr—Zr合金综合性能优于添加微量的B、RE的Cu—Cr—Zr合金。  相似文献   

14.
研究了时效温度、时效时间对快速凝固Cu-Cr-Sn-Zn合金微观组织、显微硬度和电导率的影响规律.结果表明,快速凝固状态下合金细晶强化作用显著,硬度(HV)和电导率分别为100和20.9 MS/m.合金快速凝固时效后的析出相Cr弥散、稠密,使合金强度和电导率得以提高,在500℃×15 min时效后,硬度(HV)为170,电导率达37.1 MS/m.  相似文献   

15.
在中频感应炉中采用大气熔铸法制备了CuCr25合金触头材料,利用扫描电镜对其铸态、锻态以及固溶态的显微组织进行了分析,并测定了时效和变形量对电导率和显微硬度的影响。结果表明,CuCr25合金经锻造后可以获得均匀的组织分布;在950℃×1h固溶后,在440℃时效6h可获得较高的电导率和显微硬度;固溶后经40%冷变形,在440℃时效2h后,电导率和显微硬度HV分别可达33·1M·S/m和174,比固溶后直接时效分别高出5·8M·S/m和27。  相似文献   

16.
时效制度对大冷变形2024铝合金力学性能的影响   总被引:2,自引:0,他引:2  
采用力学性能检测、透射电镜(TEM)观察等手段,研究了时效制度对大冷变形2024铝合金力学性能的影响。结果表明,大冷变形后合金的时效响应速度提高,时效20min时就接近峰值强度,比传统处理工艺(T62)缩短6h;合金的时效强化曲线呈双峰状,时效40min左右出现第一个峰,此时合金的强度最高,抗拉强度σb=580MPa,伸长率δ5=9.2%,时效120min左右出现第二个峰,但两个峰值点的屈强比(σ0.2/σb)差别较大,第二个峰值点的屈强比明显地大于第一个峰值点的屈强比;合金的伸长率δ5值呈阶梯形变化,时效时间≤40min时,δ5≥8%;时效时间≥60min时,δ5≤5%,且随着时效时间的延长,δ5值变化不大,说明大冷变形2024铝合金存在一个临界时效时间。  相似文献   

17.
研究了变形、时效对AZ80镁合金组织性能的影响.铸态AZ80镁合金经470℃×8h固溶处理,然后在400℃条件下进行不同变形量的热轧变形,变形后的部分镁合金进行170℃×16 h时效处理.结果表明,随着变形量的增加晶粒得到细化,当变形量达到80%时,晶粒尺寸由铸态的105 μ.m细化到3 μm,此时抗拉强度达到282.49 MPa;合金的伸长率先增加后减小,变形量为50%时伸长率达到最大,为24.21%;屈服强度先降低后增加.  相似文献   

18.
热变形对共晶铝硅合金铸件组织和性能的影响   总被引:1,自引:1,他引:0  
对共晶铝硅合金铸造试样实施热塑性变形,考察了变形工艺对其组织和性能的影响规律。研究表明,热变形可以球化共晶硅颗粒,焊合缩孔、缩松,从而使合金铸态下的抗拉强度由205MPa提高到260MPa,伸长率由3·2%提高到10%;合金热处理后的抗拉强度由292MPa提高到397·4MPa,伸长率由0·5%提高到6·5%;分别提高36·1%和1200%  相似文献   

19.
CU-Cr-Zr系合金非真空熔铸工艺研究   总被引:1,自引:0,他引:1  
研究了非真空条件下Cu-Cr-Zr系合金的熔铸工艺,分析了覆盖剂和脱氧剂等对合金元素氧化烧损和收得率的影响.研究结果表明,合金元素以中间合金的方式加入,采用Cu-Mg中间合金进行脱氧,使用木炭、磷片石墨和专用复合覆盖剂保护熔体,能够有效地控制合金成分,熔体中合金元素在4~5 h内能够保持稳定的收得率,Cr收得率80%~95%,Zr收得率60%~80%.合金经固溶时效处理后组织致密,成分均匀,晶内晶界主要以Cr2Zr相及球状Cr相弥散分布.熔铸工艺可实现Cu-Cr-Zr系合金在非真空条件下大吨位锭坯的连铸生产.  相似文献   

20.
通过冲熔法和包芯线技术将Zr元素添加到熔液中,制备Cu-Cr-Zr合金,比较两种不同方法所得合金的Zr元素收得率,并分析Cu-Cr-Zr合金的铸态显微组织.结果表明,包芯线技术较冲熔法能显著提高Zr元素收得率,提高约32.54%,从而使得生产成本降低.Cu-Cr-Zr合金的铸态组织中主要存在3相,即基体Cu、富Cr相和富CuZr相,不存在富CrZr相,其中富Cr相呈纤维针状和颗粒状,主要分布在基体上,部分Cr与Zr形成三元共晶组织;富CuZr相呈不规则块状,主要分布在晶界上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号