共查询到20条相似文献,搜索用时 15 毫秒
1.
The incorporation of graphite particles into AA6016 aluminum alloy matrix to fabricate metal/ceramic composites is still a great challenge and various parameters should be considered. In this study, dense AA6016 aluminum alloy/(0-20 wt%) graphite composites have successfully been fabricated by powder metallurgy process. At first, the mixed aluminum and graphite powders were cold compacted at 200 MPa and then sintered at 500 ℃ for 1 h followed by hot extrusion at 450 ℃. The influence of ceramic phases(free graphite and in-situ formed carbides) on microstructure, physical and mechanical properties of the produced composites were finally investigated. The results show that the fabricated composites have a relative density of over 98%. SEM observations indicate that the graphite has a good dispersion in the alloy matrix even at high graphite content. Hardness of all the produced composites was higher than that of aluminum alloy matrix. No cracks were observed at strain less than 23% for all hot extruded materials.Compressive strength, reduction in height, ultimate tensile stress, fracture stress, yield stress, and fracture strain of all Al/graphite composites were determined by high precision second order equations. Both compressive and ultimate tensile strengths have been correlated to microstructure constituents with focusing on the in-situ formed ceramic phases, silicon carbide(SiC) and aluminum carbide(Al_4 C_3). The ductile fracture mode of the produced composites became less dominant with increasing free graphite content and in-situ formed carbides. Wear resistance of Al/graphite composites was increased with increasing graphite content. Aluminum/20 wt% graphite composite exhibited superior wear resistance over that of AA6016 aluminum alloy. 相似文献
2.
Unidirectional (UD) and multidirectional (MD) flax/polypropylene composites were studied. Flax with varying retting degree and boiled flax was used as reinforcement for the UD composites and unmodified and maleic acid anhydride modified polypropylene (MAA-PP) was used as matrix. Multidirectional flax/polypropylene composites were manufactured on laboratory scale and on pilot scale. They were made from needle-punched hybrid flax/PP non-wovens. Normally retted flax as well as boiled flax was used. For the specimens made on pilot scale, a third kind of flax, namely bleached flax was also studied. The influence of different process times and temperatures on the mechanical properties of the composites was analysed. Generally, the composites have adequate good mechanical properties. The unidirectional composites of boiled flax combined with MAA-PP show the best mechanical properties. Contrary to the UD composites, flax treatment did not lead to the expected property improvements for MD composites. 相似文献
3.
Carbon fibre reinforced magnesium alloy matrix composites were fabricated by using liquid–solid extrusion directly following vacuum infiltration technique. The experimental results showed that the microstructures of Cf/Mg composites depended on the holding pressure. The porosity was reduced gradually, and the densification was improved obviously, respectively, with the increase of the holding pressure. The densification, hardness and Ultimate tensile strength of Cf/Mg composites were significantly improved as the holding pressure increased in the range of 0.1–15 MPa. The densification was not obvious, but the UTS of the Cf/Mg composites decreased gradually as the holding pressure increased in the range of 25–45 MPa. The Cf/Mg composites presented a good performance when the holding pressure was about 15 MPa. 相似文献
4.
The lack of data related to durability is one major challenge that needed to be addressed prior to the widespread acceptance of natural fibre reinforced polymer composites for engineering applications. In this work, the combined effect of ultraviolet (UV) radiation and water spraying on the mechanical properties of flax fabric reinforced epoxy composite was investigated to assess the durability performance of this composite used for civil engineering applications. Specimens fabricated by hand lay-up process were exposed in an accelerated weathering chamber for 1500 h. Tensile and three-point bending tests were performed to evaluate the mechanical properties. Scanning electron microscope (SEM) was used to analyse the microstructures of the composites. In addition, the durability performance of flax/epoxy composite was compared with synthetic (glass and carbon) and hybrid fibre reinforced composites. The test results show that the tensile strength/modulus of the weathered composites decreased 29.9% and 34.9%, respectively. The flexural strength/modulus reduced 10.0% and 10.2%, respectively. SEM study confirmed the degradation in fibre/matrix interfacial bonding after exposure. Comparisons with other composites implies that flax fabric/epoxy composite has potential to be used for civil engineering applications when taking its structural and durability performance into account. Proper treatments to enhance its durability performance will make it more comparable to synthetic fibre reinforced composites when considering as construction building materials. 相似文献
5.
In this letter, it is reported that a laminated SiC/W composite has been developed using the hot pressing method. It is found that a chemical reaction between W and SiC occurs during the preparation process. Making use of SEM, the components within the sandwiched-in metal and the fracturing crack for the laminated SiC/W composite are determined. Testing mechanical properties of the laminated SiC/W composite indicates that fracture toughness increases while bending strength reduces, with an increase of the thickness of the sandwiched-in metal ranging from 10–50-μm thickness. 相似文献
6.
In this paper, the effect of strain rate on interlaminar shear properties of laminates is studied. The material tested was a T300/5208 carbon/epoxy composite, and the range of strain rates explored was about 10−3 − 103 s−1. The specimens used were designed and optimized by finite element analysis, and the calculations are presented here. One of the specimens permitted the determination of the interlaminar shear modulus, G13, and the other permitted the determination of the interlaminar shear strength, S13. No influence of testing speed on interlaminar properties was observed at low, intermediate and high strain rates. Fracture surfaces were studied by scanning electron microscopy: a slight difference was observed between specimens tested at low and high strain rates. 相似文献
7.
J. Lankford 《Composites Science and Technology》1994,51(4):537-543
The influence of hydrostatic confinement on compressive strength and corresponding failure mechanisms is explored for SiC-reinforced glass-ceramics tested at different strain rates. Two composite architectures (0° and 0°/90°) are studied, and their behavior is compared with that of monolithic glass-ceramic tested under similar conditions. Composite confined pressure results are interpreted in terms of fiber buckling under quasi-static conditions and fiber kinking at high pressures, and compared with monolithic (non-composite) microfracture coalescence at low pressures and shear band formation under more intense confinement. In particular, dilatational fracture within the matrix dominates composite failure at low pressures, while high pressures cause a transition to shear-dominated mechanisms based on fiber kinking. 相似文献
8.
The current focus of manufacturing research on fibre-reinforced plastics (FRP) is composed of the search for efficient processing
techniques capable of providing high quality machined surfaces. Very limited work has been performed to identify the influence
of manufacturing processes like edge-trimming and drilling on material performance. Recent reports suggest that process-induced
damage may affect the mechanical behaviour of FRP materials. Therefore an experimental study of orthogonal cutting was conducted
on the edge trimming of unidirectional and multi-directional graphite/epoxy composites with polycrystalline diamond tools.
The effects of tool geometry and operating conditions were evaluated from an analysis of chip formation, cutting force, and
machined surface topography. All aspects of material removal were found to be primarily dependent on fibre orientation. Discontinuous
chip formation was noted throughout this study, regardless of machining parameters. Three distinct mechanisms in the edge
trimming of fibre-reinforced composite material including a combination of cutting, shearing, and fracture along the fibre/matrix
interface were observed. An investigation conducted on the compression, flexural and impact strength of graphite/epoxy composites
machined by both traditional and non-traditional techniques, confirms that manufacturing characteristics may not only affect
bulk properties but also influence the initiation and propagation of failure. 相似文献
9.
The impact behavior of glass, aramid and glass–aramid hybrid fabric epoxy matrix composites was evaluated. Delamination was identified as the main macroscopic failure mode of the composites. A simple relationship based on the macromechanical behavior of laminated composites was established, relating coupling—A26, D26—and shear—A16, D16—elements of the extensional and bending stiffness matrices to the total energy absorbed at impact. The results obtained show that the A66/D66 ratio is a relevant parameter of concern, correlated with the behavior of the composites under impact. Additionally, the coupling matrix Bij was shown to restrain the macroscopic delamination of the composites. 相似文献
10.
以碳毡为增强体,碳氢有机液体为前驱体,采用自行设计的快速化学液相沉积工艺(RCLD)制备了Cf/C、Cf/C-SiC复合材料;研究了不同密度的毡体和不同的沉积时间等因素对复合材料力学性能和氧化性的影响,根据材料结构特征分析了其影响机理. 相似文献
11.
碳纤维/环氧树脂复合材料高速冲击性能 总被引:1,自引:0,他引:1
采用树脂传递模塑(RTM)工艺制备碳纤维/环氧树脂复合材料,通过空气炮冲击实验研究树脂韧性和碳纤维类型对复合材料抗高速冲击性能的影响,并对高速冲击后的试样进行压缩性能测试,研究高速冲击损伤对复合材料剩余压缩性能的影响。结果表明:树脂的韧性可以降低复合材料遭受高速冲击时的内部损伤程度,大幅提高复合材料的抗高速冲击性能和冲击后剩余压缩性能;T700S碳纤维增强复合材料抗高速冲击性能优于T800H碳纤维增强复合材料;复合材料的破坏模式与冲击速率有关,冲击速率较低时,复合材料弹击面出现圆形凹坑,背弹面出现鼓包;冲击速率较高时,复合材料弹击面出现圆形通孔,背弹面出现沿纤维方向撕裂断口。 相似文献
12.
为了提高钡长石(BAS)玻璃陶瓷的力学性能,采用轧膜成型、热压烧结方法制备出纤维分布均匀的致密短碳纤维增强BAS玻璃陶瓷基复合材料(Csf/BAS).采用X射线衍射分析,扫描电子显微镜、透射电子显微镜观察及三点弯曲法与单边开口梁法研究了纤维含量对复合材料组织及力学性能的影响.研究表明:Csf对BAS玻璃陶瓷有良好的强韧化效应.体积分数为30%Csf/BAS复合材料的室温抗弯强度及断裂韧性分别为255 MPa和3.45 MPa.m1/2,其主要的韧化机制为裂纹偏转、纤维的拔出与桥接.用摩尔分数25%Sr代替Ba实现了基体的六方→单斜相的完全转变,进一步提高了复合材料的力学性能. 相似文献
13.
Jinsong Li Ruiying Luo Qiang Li Tianmin Wang 《Materials Science and Engineering: A》2008,480(1-2):278-282
Three kinds of preforms, chopped fibers/resin carbon, spreading layers of carbon cloth, and needle-pricked long fiber felt, were used in this study. The preforms were densified by using the electrified preform heating CVI method (ECVI), and infiltrated using natural gas. Initial thermal gradients were determined. Resistivity and density evolutions with infiltration time have been recorded. A tensile test was applied to investigate the influence of preform architecture on the tensile properties of the C/C composites. Results show that the architecture of preform strongly influences the uniformity of infiltration and fibers/matrix bonding. The samples prepared from using 1K plain carbon cloth have the smallest density variations with position (about 0.011 g/cm3), and possess the highest tensile strength and modulus, while the samples produced from chopped fibers/resin carbon possess the lowest tensile strength due to their strong interfacial bonding between resin carbon and carbon fibers and poor microstructure. 相似文献
14.
E. C. Botelho R. S. Almeida L. C. Pardini M. C. Rezende 《Applied Composite Materials》2007,14(3):209-222
The influence of hygrothermal conditioning on mechanical properties of Carall laminates have been investigated by tensile
and compression tests. The environmental factors can limit the applications of composites by deteriorating the mechanical
properties during service. The importance of temperature at the time of conditioning plays an important role in environmental
degradation of such composite materials. In this work, the results show that for carbon fiber/epoxy composites tensile and
compression values decrease after hygrothermal conditioning. However, the changes on mechanical properties of Carall are negligible,
regardless the hygrothermal conditioning. 相似文献
15.
利用电子万能试验机以及Split Hopkinson Compressive Bar(SHPB)测试了2DC/C复合材料在准静态、动态载荷下的压缩性能,结合光学显微镜分析了其在不同应变率下的破坏形貌、讨论了应变率对压缩破坏形貌的影响。结果表明:与准静态(10-4/s)相比,动态载荷下(5×102/s)复合材料的压缩强度提高了55%,压缩刚度提高了66%,具有较强的应变率效应;在准静态载荷下,C/C复合材料沿40°角剪切破坏,断口上炭纤维破坏具有溃散及剪切破坏特征,而在动态载荷下,C/C复合材料破坏成大小不一的碎片,其炭纤维破坏具有劈裂特征。C/C复合材料破坏模式的不同可归结为基体及界面强度的应变率效应。 相似文献
16.
VGCF的表面处理对VGCF/SMPU复合材料力学和热学性能的影响 总被引:1,自引:0,他引:1
用二步法对气相生长碳纤维(VGCF)进行表面改性处理,然后用溶液混合法制备了VGCF/形状记忆聚氨酯(SMPU)复合材料.用扫描电镜观察分析了VGCF在SMPU基体中的分散性以及与基体的界面结合情况,研究了复合材料的力学性能和热学性能.结果表明:与未经二步法处理的VGCF相比,用二步法表面处理使VGCF在基体中的分散性及与基体的界面结合能力得到较大的提高,且使其对复合材料的拉伸强度及拉伸弹性模量的增强效果更为明显;虽然SMPU与VGCF复合后的断裂伸长率有所降低,但是与未处理的VGCF制备的复合材料相比,断裂伸长率有明显增大;表面处理的VGCF更有利于提高复合材料的热稳定性. 相似文献
17.
Laminated ZrB2/Mo composites, alternately consisting of matrix layers of 80 vol.% ZrB2 + 10 vol.% nano-SiC whiskers + 10 vol.% SiC particles and Mo interlayers, with the addition of Si and B as interlayer adjusting
agent, were prepared by roll-compaction and spark plasma sintering (at 1600°C) process. XRD and SEM techniques were used to
characterize the phases and microstructure of the obtained composites. The results showed that without the addition of Si
and B in the interlayer, interfacial debonding between the matrix layer and interlayer often occurred due to the thermal mismatch
between the two kinds of layers. However, the interfacial mismatch could be effectively inhibited by the addition of Si and
B to the Mo interlayers. The laminated ZrB2/Mo composites with 6 at.% Si and 4 at.% B in the interlayers showed the highest bending strength at (451±20) MPa and the
highest fracture toughness at (7.52±0.12) MPa·m?. MoB, ZrB and Mo5SiB2 were formed by the reactions among ZrB2, Mo and the additions. 相似文献
18.
Effect of isotropic interlayers on the mechanical and thermal properties of carbon/carbon composites
Jincao Zhang Yunfeng Zhang Yongfeng Ni Jinsong Li Caili Yang 《Materials Letters》2010,64(13):1536-5006
Multilayer which consists of isotropic (ISO) interlayer and rough laminar (RL) and single RL structure carbon/carbon (C/C) composites have been prepared by isothermal chemical vapor infiltration at 5 and 1 kPa. Mechanical and thermal properties of both composites have also been studied. Experimental results indicate that ISO interlayer between fiber and matrix plays an important role on fracture behavior and strength of the composites. Comparing with single RL structure composites, the strength decrease of composites with ISO interlayers is about 28-40%. ISO interlayer is the main source of fracture due to its low density and micropores between crystallites. The low thermal conductivity of ISO interlayers also results in the thermal property degradation of obtained C/C composites. By reducing infiltration pressure, the ISO interlayers are substituted by compact RL matrix which improves the general properties of C/C composites. 相似文献
19.
Hao Ding Xiping Cui Naonao Gao Yuan Sun Yuanyuan Zhang Lujun Huang Lin Geng 《材料科学技术学报》2021,62(3):221-233
The(TiB/Ti)-TiAl composites with a laminated structure composing of alternating TiB/Ti composite layers,α2-Ti3Al interfacial reaction layers of andγ-TiAl layers were successfully pre pared by spark plasma sintering of alternately stacked Tib2/Ti powder layers and TiAl powder layers.And the influence of thickness ratio of Tib2/Ti powder layers to TiAl powder layers on microstructure evolution and mechanical properties of the re sulting(TiB/Ti)-TiAl laminated composites were investigated systemically.The results showed that the thickening ofα2-Ti3Al layers which originated from the reaction of Ti and TiAl was significantly hindered by introducing Tib2particles into starting Ti powders.As the thickness ratio of Tib2/Ti powder layers to TiAl powder layers increased,the bending fracture strength and fracture toughness at room temperature of the final(TiB/Ti)-TiAl laminated composites were remarkably improved,especially for the(TiB/Ti)-TiAl composites prepared by Tib2/Ti powder layers with thickness of 800μm and TiAl powder layers with thickness of 400μm,whose fracture toughness and bending strength were up to 51.2 MPa·m1/2and 1456 MPa,respectively,293%and 108%higher than that of the monolithic TiAl alloys in the present work.This was attributed to the addition of high-performance network TiB/Ti composite layers.Moreover,it was noteworthy that the ultimate tensile strength at 700℃of(TiB/Ti)-TiAl composites fabricated by 400μm thick Tib2/Ti powder layers and 400μm thick TiAl powder layers was as high as that at 550℃of network TiB/Ti composites.This means the service temperature of(TiB/Ti)-TiAl laminated composites was likely raised by 150℃,meanwhile a good combination of high strength and high toughness at ambient tempe rature could be maintained.Finally,the fracture mechanism of(TiB/Ti)-TiAl laminated composites was proposed. 相似文献
20.
Composites with a borosilicate glass matrix containing different concentrations of vanadium particles were fabricated by powder metallurgy and hot-pressing. The mechanical properties and fracture behaviour of the composites were assessed by a range of techniques. Young's modulus, fracture strength in bending, and fracture toughness increased with vanadium content. By virtue of the good interfacial bonding and low residual internal stresses, an effective crack-particle interaction during fracture was achieved. The fracture toughness of composites containing 30 vol. % of vanadium inclusions was approximately 65 % higher than that of the unreinforced glass. Experimental values for the fracture toughness increment were in good qualitative agreement with the predictions of theoretical models in the literature. Extensive plastic deformation of the vanadium inclusions was not found, however. This was attributed mainly to the constraint imposed by the rigid matrix surrounding the particles and to possible embrittlement of the particles during composite fabrication at high temperatures. The brittleness index (B) of the composites was calculated and its relevance for characterisation of the ductile versus brittle behaviour of brittle-matrix composites is discussed. 相似文献