首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thanks to the unique properties of graphite oxides and graphene oxide (GO), this material has become one of the most promising materials that are widely studied. Graphene oxide is not only a precursor for the synthesis of thermally or chemically reduced graphene: researchers revealed a huge amount of unique optical, electronic, and chemical properties of graphene oxide for many different applications. In this review, we focus on the structure and characterization of GO, graphene derivatives prepared from GO and GO applications. We describe GO utilization in environmental applications, medical and biological applications, freestanding membranes, and various composite systems.  相似文献   

2.
Polymeric nanofibers are of great interest in biomedical applications, such as tissue engineering, drug delivery and wound healing, due to their ability to mimic and restore the function of natural extracellular matrix (ECM) found in tissues. Electrospinning has been heavily used to fabricate nanofibers because of its reliability and effectiveness. In our research, we fabricated poly(ε-caprolactone)-(PCL), magnesium oxide-(MgO) and keratin (K)-based composite nanofibers by electrospinning a blend solution of PCL, MgO and/or K. The electrospun nanofibers were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), mechanical tensile testing and inductively-coupled plasma optical emission spectroscopy (ICP-OES). Nanofibers with diameters in the range of 0.2–2.2 µm were produced by using different ratios of PCL/MgO and PCL-K/MgO. These fibers showed a uniform morphology with suitable mechanical properties; ultimate tensile strength up to 3 MPa and Young’s modulus 10 MPa. The structural integrity of nanofiber mats was retained in aqueous and phosphate buffer saline (PBS) medium. This study provides a new composite material with structural and material properties suitable for potential application in tissue engineering.  相似文献   

3.
In the new era of modern flexible and bendable technology, graphene-based materials have attracted great attention. The excellent electrical, mechanical, and optical properties of graphene as well as the ease of functionalization of its derivates have enabled graphene to become an attractive candidate for the construction of flexible devices. This paper provides a comprehensive review about the most recent progress in the synthesis and applications of graphene-based composites. Composite materials based on graphene, graphene oxide (GO), and reduced graphene oxide (rGO), as well as conducting polymers, metal matrices, carbon–carbon matrices, and natural fibers have potential application in energy-harvesting systems, clean-energy storage devices, and wearable and portable electronics owing to their superior mechanical strength, conductivity, and extraordinary thermal stability. Additionally, the difficulties and challenges in the current development of graphene are summarized and indicated. This review provides a comprehensive and useful database for further innovation of graphene-based composite materials.  相似文献   

4.
In this work, two-component dialdehyde chitosan/hyaluronic acid scaffolds were developed and characterized. Dialdehyde chitosan was obtained by one-step synthesis with chitosan and sodium periodate. Three-dimensional scaffolds were prepared by the lyophilization method. Fourier transform infrared spectroscopy (FTIR) was used to observe the chemical structure of scaffolds and scanning electron microscopy (SEM) imaging was done to assess the microstructure of resultant materials. Thermal analysis, mechanical properties measurements, density, porosity and water content measurements were used to characterize physicochemical properties of dialdehyde chitosan/hyaluronic acid 3D materials. Additionally, human epidermal keratinocytes (NHEK), dermal fibroblasts (NHDF) and human melanoma cells (A375 and G-361) were used to evaluate cell viability in the presence of subjected scaffolds. It was found that scaffolds were characterized by a porous structure with interconnected pores. The scaffold composition has an influence on physicochemical properties, such as mechanical strength, thermal resistance, porosity and water content. There were no significant differences between cell viability proliferation of all scaffolds, and this observation was visible for all subjected cell lines.  相似文献   

5.
A wide variety of composite scaffolds with unique geometry, porosity and pore size can be fabricated with versatile 3D printing techniques. In this work, we fabricated 3D-printed composite scaffolds of polycaprolactone (PCL) incorporating bioactive glass (BG) particles (13-93 and 13-93B3 compositions) by using fused deposition modeling (FDM). The scaffolds were modified with a “mussel-inspired surface coating” to regulate biological properties. The chemical and surface properties of scaffolds were analyzed by Fourier transform infrared spectroscopy (FTIR), contact angle and scanning electron microscopy (SEM). Polydopamine (PDA) surface-modified composite scaffolds exhibited attractive properties. Firstly, after the surface modification, the adhesion of a composite coating based on gelatin incorporated with strontium-doped mesoporous bioactive glass (Sr-MBGNs/gelatin) was significantly improved. In addition, cell attachment and differentiation were promoted, and the antibacterial properties of the scaffolds were increased. Moreover, the bioactivity of these scaffolds was also significantly influenced: a hydroxyapatite layer formed on the scaffold surface after 3 days of immersion in SBF. Our results suggest that the promoting effect of PDA coating on PCL-BG scaffolds leads to improved scaffolds for bone tissue engineering.  相似文献   

6.
Employment and the effect of eco-friendly bismuth oxide nanoparticles (BiONPs) in bio-cement were studied. The standard method was adopted to prepare BiONPs-composite. Water was adopted for dispersing BiONPs in the composite. A representative batch (2 wt. % of BiONPs) was prepared without water to study the impact of water on composite properties. For each batch, 10 samples were prepared and tested. TGA (thermogravimetric analysis) performed on composite showed 0.8 wt. % losses in samples prepared without water whereas, maximum 2 wt. % weight losses observed in the water-based composite. Presence of BiONPs resulted in a decrease in depth of curing. Three-point bending flexural strength decreased for increasing BiONPs content. Comparative study between 2 wt. % samples with and without water showed 10.40 (±0.91) MPa and 28.45 (±2.50) MPa flexural strength values, respectively, indicating a significant (p < 0.05) increase of the mechanical properties at the macroscale. Nanoindentation revealed that 2 wt. % without water composites showed significant (p < 0.05) highest nanoindentation modulus 26.4 (±1.28) GPa and hardness 0.46 (±0.013) GPa. Usage of water as dispersion media was found to be deleterious for the overall characteristics of the composite but, at the same time, the BiONPs acted as a very promising filler that can be used in this class of composites.  相似文献   

7.
Carbon nanostructures have played an important role in creating a new field of materials based on carbon. Chemical modification of carbon nanostructures through grafting has been a successful step to improve dispersion and compatibility in solvents, with biomolecules and polymers to form nanocomposites. In this sense carbohydrates such as chitosan are extremely valuable because their functional groups play an important role in diversifying the applications of carbon nanomaterials. This paper reports the covalent attachment of chitosan onto graphene oxide, taking advantage of this carbohydrate at the nanometric level. Grafting is an innovative route to modify properties of graphene, a two-dimensional nanometric arrangement, which is one of the most novel and promising nanostructures. Chitosan grafting was achieved by redox reaction using different temperature conditions that impact on the morphology and features of graphene oxide sheets. Transmission Electron Microscopy, Fourier Transform Infrared, Raman and Energy Dispersive spectroscopies were used to study the surface of chitosan-grafted-graphene oxide. Results show a successful modification indicated by the functional groups found in the grafted material. Dispersions of chitosan-grafted-graphene oxide samples in water and hexane revealed different behavior due to the chemical groups attached to the graphene oxide sheet.  相似文献   

8.
As a nano-carbon material with excellent properties, Graphene oxide (GO) has been widely used in cement-based materials, and the negative effect of paste workability caused by GO agglomeration has also been widely concerning. In this study, a polycarboxylate-silane modified graphene oxide composite (PSG) was prepared by coupling polycarboxylate molecules to the surface of graphene oxide (GO) via a reaction with vinyl triethoxysilane. The effects of GO and PSG on the cement paste and the mechanisms underpinning these effects were investigated using fluidity and rheological parameter measurements, and ion concentration and zeta potential analyses. It was found that, in the aqueous phase of the paste, the polycarboxylate molecular chains on the surface of the PSG complexed with calcium ions (Ca2+), thereby preventing Ca2+ from bridging the GO sheets, and thus stabilizing the surface potential and the electrostatic repulsion. This prevented the PSG from forming an agglomerate structure such as that formed by GO under the same conditions, thereby substantially enhancing workability of paste with nano-carbon material. This study provides some new foundations and ideas for the further application of graphene oxide materials in cement-based materials.  相似文献   

9.
In this work, silver (Ag) decorated reduced graphene oxide (rGO) coated with ultrafine CuO nanosheets (Ag-rGO@CuO) was prepared by the combination of a microwave-assisted hydrothermal route and a chemical methodology. The prepared Ag-rGO@CuO was characterized for its morphological features by field emission scanning electron microscopy and transmission electron microscopy while the structural characterization was performed by X-ray diffraction and Raman spectroscopy. Energy-dispersive X-ray analysis was undertaken to confirm the elemental composition. The electrochemical performance of prepared samples was studied by cyclic voltammetry and galvanostatic charge-discharge in a 2M KOH electrolyte solution. The CuO nanosheets provided excellent electrical conductivity and the rGO sheets provided a large surface area with good mesoporosity that increases electron and ion mobility during the redox process. Furthermore, the highly conductive Ag nanoparticles upon the rGO@CuO surface further enhanced electrochemical performance by providing extra channels for charge conduction. The ternary Ag-rGO@CuO nanocomposite shows a very high specific capacitance of 612.5 to 210 Fg−1 compared against rGO@CuO which has a specific capacitance of 375 to 87.5 Fg−1 and the CuO nanosheets with a specific capacitance of 113.75 to 87.5 Fg−1 at current densities 0.5 and 7 Ag−1, respectively.  相似文献   

10.
Graphene oxide-modified rubberized engineered cementitious composite (GO-RECC) is attracting the attention of researchers because of the reported benefits of the GO and crumb rubber (CR) on the strength and deformation properties of the composite. While it is well established that GO negatively affects the workability of cementitious composites, its influence on the attainment of the desired self-compacting (SC) properties of ECC has not yet been thoroughly investigated, especially when combined with crumb rubber (CR). In addition, to simplify the number of trial mixes involved in designing SC-GO-RECC, there is a need to develop and optimize the process using Design of Experiment (DOE) methods. Hence, this research aims to investigate and model using response surface methodology (RSM), the combined effects of the GO and CR on the SC properties of ECC through the determination of T500, slump flow, V-funnel, and L-box ratio of the SC-GORECC as the responses, following the European Federation of National Associations Representing for Concrete (EFNARC) 2005 specifications. The input factors considered were the GO by wt.% of cement (0.02, 0.04, 0.06, and 0.08) and CR as a replacement of fine aggregate by volume (5, 10, and 15%). The results showed that increasing the percentages of GO and CR affected the fresh properties of the SC-GORECC adversely. However, all mixes have T500 of 2.4 to 5.2 s, slump flow of 645 to 800 mm, V-funnel time of 7.1 to 12.3 s, and L-box ratio (H2/H1) of 0.8 to 0.98, which are all within acceptable limits specified by EFNARC 2005. The developed response prediction models were well fitted with R2 values ranging from 91 to 99%. Through the optimization process, optimal values of GO and CR were found to be 0.067% and 6.8%, respectively, at a desirability value of 1.0.  相似文献   

11.
Nanocomposites based on waterborne polyurethane (WPU) and graphene oxide (GO) have been synthesized and characterized. It was found that after the incorporation of GO, WPU films became mechanically more rigid, and the Young’s modulus increased by almost six times. It is shown that the lateral size of GO sheets influences the mechanical properties of WPU/GO composites. In particular, composites with larger lateral size of GO sheets have higher values of Young’s modulus. Additionally, if the mechanical properties are improved with the addition of GO additive, then water absorption decreases for WPU modified with small GO sheets whereas it increases for WPU modified with large GO sheets. Possible reasons for this behavior are discussed.  相似文献   

12.
Nano coatings for anti-corrosion and electromagnetic wave absorbing can simultaneously implement the functions of assimilating electromagnetic waves and reducing the corrosion of materials caused by corrosive environments, such as seawater. In this work, a composite material for both electromagnetic wave absorption and anti-corrosion was prepared by an in-situ chemical oxidation and surface coating method using carbonyl iron powder (CIP), graphene oxide (GO) and aniline (AN). The synthesized composite material was characterized by scanning electron microscopy (SEM), infrared spectroscopy (FT-IR) and XRD. The carbonyl iron powder-graphene oxide-polyaniline (CIP-GO-PANI) composite material was used as the functional filler, and the epoxy resin was the matrix body for preparing the anticorrosive wave-absorbing coating. The results show that CIP had strong wave-absorbing properties, and the anti-corrosion property was greatly enhanced after being coated by GO-PANI.  相似文献   

13.
In this study, the effect of graphene oxide nanosheets (GONs) embedded in a thin-film composite (TFC) polyamide (PA) membrane on the acid resistance of the membrane was investigated by comparison with the effect of oxidized single-walled carbon nanotubes (o-SWNTs). Both GONs and o-SWNTs increased the hydrophilicity of the membranes and caused the formation of ridges and clustered bumps on the surfaces, resulting in slightly improved water permeability. However, the o-SWNTs-embedded membrane did not show a difference in acid resistance depending on the concentration of embedded material, but the acid resistance of the GONs-embedded membrane increased with increasing concentration. The acid resistance of the GONs-embedded membranes appears to be mainly due to the barrier effect caused by the nanosheet shape of the GONs along with a sacrificial role of the PA layer protruded by the addition of GONs and the decrease of acid reaction sites by the hydrogen bonding between GONs and PA. When the TFC PA membrane was prepared with a high amount (300 ppm) of the GONs without considering aggregation of GONs, membrane selectivity exceeding 95% was maintained 4.7 times longer than the control TFC membrane. This study shows that the acid resistance can be enhanced by the use of GONs, which give a barrier effect to the membrane.  相似文献   

14.
The present paper describes the effect of the concentration of two graphene oxides (with different oxygen content) in the modifier layer on the electrochemical and structural properties of noble metal disk electrodes used as working electrodes in voltammetry. The chemistry of graphene oxides was tested using EDS, FTIR, UV–Vis spectroscopy, and combustion analysis. The structural properties of the obtained modifier layers were examined by means of scanning electron and atomic force microscopy. Cyclic voltammetry was employed for comparative electrochemical studies.  相似文献   

15.
Nickel-based composite electrochemical coatings (CEC) modified with multilayer graphene oxide (GO) were obtained from a sulfate-chloride electrolyte in the reverse electrolysis mode. The microstructure of these CECs was investigated by X-ray phase analysis and scanning electron microscopy. The corrosion-electrochemical behavior of nickel–GO composite coatings in a 0.5 M solution of H2SO4was studied. Tests in a 3.5% NaCl solution showed that the inclusion of GO particles into the composition of electrolytic nickel deposits makes their corrosion rate 1.40–1.50 times less.  相似文献   

16.
Reductions in bleeding rates and bulk shrinkage of grouting repair materials comprise the key to solving the leakage of earth–rock dams. In this paper, an anti-seepage grouting material for earth–rock dam was developed by introducing mineral admixtures and graphene oxide (GO) nano sheets into low-cost clay–cement grouting materials and by adding polycarboxylate superplasticizers (PCs) to improve slurry viscosity. The experimental results show that the shear stress and viscosity of the slurry increase with the increase in GO concentration, and the slurry has a certain thixotropy. GO can provide a platform to promote the formation of hydration products and fill the pores of clay particles due to its high specific surface area and low volume; in this paper, the microstructure of clay–cement–graphene oxide (CCGO) grouting materials were improved. Therefore, the bleeding rate, bulk shrinkage rate, setting time and unconfined compressive strength (UCS) of the sample were macroscopically improved. In particular, the bleeding rate and bulk shrinkage rate were shown to be 0% when the content of GO reached 1.08 g/kg. Thus, the grouting anti-seepage and reinforcement performance of CCGO grouting materials were improved.  相似文献   

17.
18.
Background: The discrepancy among the in vivo results found in the literature regarding graphene’s side effects led us to conduct an in vivo study with graphene. Methods: In vivo tests involving intraperitoneal inoculation of graphene and graphene oxide nanosheets in rats were carried out to assess potential changes in the blood and organs after 15 and 30 days. Graphene and graphene oxide nanosheets at a concentration of 4 mg per kilogram were suspended in an aqueous solution of 0.9% NaCl at a 1:1 proportion (graphene or graphene oxide), i.e., 1 mg/mL. Results: Optical microscopy of liver, kidney, spleen, and lung tissues revealed no visible histological changes. However, particle traces were found in the peritoneal cavity. Thirty days after inoculation, blood samples were collected for hematological analysis. The blood analysis showed changes indicating a hepatic inflammatory process. Hematological changes after 30 days consisted of alterations to the red series, including microcytosis or higher mean hemoglobin concentrations. In addition, changes in prothrombin and thromboplastin caused longer coagulation times. Conclusion: This study contributes to further clarifying the possible toxicity of graphene and its potential biomedical applications.  相似文献   

19.
Lithium-sulfur (Li-S) battery is considered one of the possible alternatives for next-generation high energy batteries. However, its practical applications are still facing great challenges because of poor electronic conductivity, large volume change, and polysulfides dissolution inducing “shuttle reaction” for the S cathode. Many strategies have been explored to alleviate the aforementioned concerns. The most common approach is to embed S into carbonaceous matrix for constructing C-S composite cathodes. Herein, we fabricate the C-S cathode reduced graphene oxide-S (rGO-S) composites via one step hydrothermal and in-situ thermal reduction methods. The structural features and electrochemical properties in Li-S cells of the two type rGO-S composites are studied systematically. The rGO-S composites prepared by one step hydrothermal method (rGO-S-HT) show relatively better comprehensive performance as compared with the ones by in-situ thermal reduction method (rGO-S-T). For instance, with a current density of 100 mA g−1, the rGO-S-HT composite cathodes possess an initial capacity of 1290 mAh g−1 and simultaneously exhibit stable cycling capability. In particular, as increasing the current density to 1.0 A g−1, the rGO-S-HT cathode retains a reversible capacity of 582 mAh g−1 even after 200 cycles. The enhanced electrochemical properties can be attributed to small S particles uniformly distributed on rGO sheets enabling to significantly improve the conductivity of S and effectively buffer large volume change during lithiation/delithiation.  相似文献   

20.
In this work, we designed and fabricated a multifunctional nanocomposite system that consists of chitosan, raspberry-like silver nanoparticles, and graphene oxide. The room temperature atmospheric pressure microplasma (RT-APM) process provides a rapid, facile, and environmentally-friendly method for introducing silver nanoparticles into the composite system. Our composite can achieve a pH controlled single and/or dual drug release. Under pH 7.4 for methyl blue loaded on chitosan, the drug release profile features a burst release during the first 10 h, followed by a more stabilized release of 70–80% after 40–50 h. For fluorescein sodium loaded on graphene oxide, the drug release only reached 45% towards the end of 240 h. When the composite acted as a dual drug release system, the interaction of fluorescein sodium and methyl blue slowed down the methyl blue release rate. Under pH 4, both single and dual drug systems showed a much higher release rate. In addition, our composite system demonstrated strong antibacterial abilities against E. coli and S. aureus, as well as an excellent photothermal conversion effect under irradiation of near infrared lasers. The photothermal conversion efficiency can be controlled by the laser power. These unique functionalities of our nanocomposite point to its potential application in multiple areas, such as multimodal therapeutics in healthcare, water treatment, and anti-microbials, among others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号