首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palmitoylethanolamide (PEA) belongs to the class of N-acylethanolamine and is an endogenous lipid potentially useful in a wide range of therapeutic areas; products containing PEA are licensed for use in humans as a nutraceutical, a food supplement, or food for medical purposes for its analgesic and anti-inflammatory properties demonstrating efficacy and tolerability. However, the exogenously administered PEA is rapidly inactivated; in this process, fatty acid amide hydrolase (FAAH) plays a key role both in hepatic metabolism and in intracellular degradation. So, the aim of the present study was the design and synthesis of PEA analogues that are more resistant to FAAH-mediated hydrolysis. A small library of PEA analogues was designed and tested by molecular docking and density functional theory calculations to find the more stable analogue. The computational investigation identified RePEA as the best candidate in terms of both synthetic accessibility and metabolic stability to FAAH-mediated hydrolysis. The selected compound was synthesized and assayed ex vivo to monitor FAAH-mediated hydrolysis and to confirm its anti-inflammatory properties. 1H-NMR spectroscopy performed on membrane samples containing FAAH in integral membrane protein demonstrated that RePEA is not processed by FAAH, in contrast with PEA. Moreover, RePEA retains PEA’s ability to inhibit LPS-induced cytokine release in both murine N9 microglial cells and human PMA-THP-1 cells.  相似文献   

2.
Adiponectin is an adipokine produced by adipose tissue. It has numerous beneficial effects. In particular, it improves metabolic effects and glucose homeostasis, lipid profile, and is involved in the regulation of cytokine profile and immune cell production, having anti-inflammatory and immune-regulatory effects. Adiponectin’s role is already known in immune diseases and also in neurodegenerative diseases. Neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease, are a set of diseases of the central nervous system, characterized by a chronic and selective process of neuron cell death, which occurs mainly in relation to oxidative stress and neuroinflammation. Lifestyle is able to influence the development of these diseases. In particular, unhealthy nutrition on gut microbiota, influences its composition and predisposition to develop many diseases such as neurodegenerative diseases, given the importance of the “gut-brain” axis. There is a strong interplay between Adiponectin, gut microbiota, and brain-gut axis. For these reasons, a healthy diet composed of healthy nutrients such as probiotics, prebiotics, polyphenols, can prevent many metabolic and inflammatory diseases such as neurodegenerative diseases and obesity. The special Adiponectin role should be taken into account also, in order to be able to use this component as a therapeutic molecule.  相似文献   

3.
Human lifestyle and dietary behaviors contribute to disease onset and progression. Neurodegenerative diseases (NDDs), considered multifactorial disorders, have been associated with changes in the gut microbiome. NDDs display pathologies that alter brain functions with a tendency to worsen over time. NDDs are a worldwide health problem; in the US alone, 12 million Americans will suffer from NDDs by 2030. While etiology may vary, the gut microbiome serves as a key element underlying NDD development and prognosis. In particular, an inflammation-associated microbiome plagues NDDs. Conversely, sequestration of this inflammatory microbiome by a correction in the dysbiotic state of the gut may render therapeutic effects on NDDs. To this end, treatment with short-chain fatty acid-producing bacteria, the main metabolites responsible for maintaining gut homeostasis, ameliorates the inflammatory microbiome. This intimate pathological link between the gut and NDDs suggests that the gut-brain axis (GBA) acts as an underexplored area for developing therapies for NDDs. Traditionally, the classification of NDDs depends on their clinical presentation, mostly manifesting as extrapyramidal and pyramidal movement disorders, with neuropathological evaluation at autopsy as the gold standard for diagnosis. In this review, we highlight the evolving notion that GBA stands as an equally sensitive pathological marker of NDDs, particularly in Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and chronic stroke. Additionally, GBA represents a potent therapeutic target for treating NDDs.  相似文献   

4.
Amyloid-β (Aβ) pathology is known to promote chronic inflammatory responses in the brain. It was thought previously that Aβ is only associated with Alzheimer’s disease and Down syndrome. However, studies have shown its involvement in many other neurological disorders. The role of astrocytes in handling the excess levels of Aβ has been highlighted in the literature. Astrocytes have a distinctive function in both neuronal support and protection, thus its involvement in Aβ pathological process may tip the balance toward chronic inflammation and neuronal death. In this review we describe the involvement of astrocytes in Aβ related disorders including Alzheimer’s disease, Down syndrome, cerebral amyloid angiopathy, and frontotemporal dementia.  相似文献   

5.
Psoriasis is a recurrent, chronic, immune-mediated, systemic inflammatory disease of the skin, joints, and other organic systems. After atopic dermatitis, chronic stationary psoriasis is the most common inflammatory skin disease, affecting an average of 2–4% of the world’s population. The disease carries a significant burden due to its numerous comorbidities and the major impact on patients’ social and emotional aspects of life. According to current knowledge, psoriasis is a multifactorial disease that occurs in genetically predisposed individuals under various environmental factors, which trigger an immune response disorder with a series of complex inflammatory cascades. The disease is initiated and maintained by mutual interaction of the innate and adaptive immune cells, primarily dendritic cells, T lymphocytes, and keratinocytes, whose leading role alternates at different stages of the disease, consisting mainly in the IL-23/Th17 pathway. Inflammatory events result in consequent epidermal and dermal changes and evolution of the characteristic psoriatic phenotype, respectively. This paper aims to present a comprehensive overview of current knowledge on psoriasis genetic and environmental etiological factors, immunopathogenesis, and the leading cellular and cytokine participants in the inflammatory pathways of this disease.  相似文献   

6.
Several studies have demonstrated a relevant role of intestinal epithelial cells in the immune response and in chronic inflammatory conditions, including ulcers, colitis, and Crohn’s disease. Baicalin (BA), extracted from the root of Scutellaria baicalensis, has various beneficial healthy effects, including anti-inflammatory activity. However, few studies have evaluated BA effects on autophagic signaling in epithelial cell response to inflammatory stimuli. To explore possible beneficial effects of BA, HT-29 cells were exposed to lipopolysaccharide (LPS), in presence or absence of BA, for 4 h. We evaluated mRNA levels of autophagy-related genes and cytokines, triggering inflammatory response. Furthermore, the expression of claudin 1, involved in the regulation of paracellular permeability was analyzed. BA treatment repressed LPS-induced expression of TNF-α and IL-1β. The down-regulation of autophagy-related genes induced by LPS was counteracted by cell pretreatment with BA. Under these conditions, BA reduced the NF-κB activation caused by LPS. Also, BA restored mRNA and protein levels of claudin 1, which were reduced by LPS. In conclusion, in intestinal epithelial cells BA regulates the NF-κB activation and modulates both autophagic and inflammatory processes, leading to an improvement of paracellular permeability. These results suggest that the anti-inflammatory effects of BA can be associated to the regulation of autophagic flux.  相似文献   

7.
This narrative review summarises the evidence for considering physical exercise (PE) as a non-pharmacological intervention for delaying cognitive decline in patients with Alzheimer’s disease (AD) not only by improving cardiovascular fitness but also by attenuating neuroinflammation. Ageing is the most important risk factor for AD. A hallmark of the ageing process is a systemic low-grade chronic inflammation that also contributes to neuroinflammation. Neuroinflammation is associated with AD, Parkinson’s disease, late-onset epilepsy, amyotrophic lateral sclerosis and anxiety disorders. Pharmacological treatment of AD is currently limited to mitigating the symptoms and attenuating progression of the disease. AD animal model studies and human studies on patients with a clinical diagnosis of different stages of AD have concluded that PE attenuates cognitive decline not only by improving cardiovascular fitness but possibly also by attenuating neuroinflammation. Therefore, low-grade chronic inflammation and neuroinflammation should be considered potential modifiable risk factors for AD that can be attenuated by PE. This opens the possibility for personalised attenuation of neuroinflammation that could also have important health benefits for patients with other inflammation associated brain disorders (i.e., Parkinson’s disease, late-onset epilepsy, amyotrophic lateral sclerosis and anxiety disorders). In summary, life-long, regular, structured PE should be considered as a supplemental intervention for attenuating the progression of AD in human. Further studies in human are necessary to develop optimal, personalised protocols, adapted to the progression of AD and the individual’s mental and physical limitations, to take full advantage of the beneficial effects of PE that include improved cardiovascular fitness, attenuated systemic inflammation and neuroinflammation, stimulated brain Aβ peptides brain catabolism and brain clearance.  相似文献   

8.
Rheumatoid Arthritis (RA) is a chronic autoimmune inflammatory disease characterized by the swelling of multiple joints, pain and stiffness, and accelerated atherosclerosis. Sustained immune response and chronic inflammation, which characterize RA, may induce endothelial activation, damage and dysfunction. An equilibrium between endothelial damage and repair, together with the preservation of endothelial integrity, is of crucial importance for the homeostasis of endothelium. Endothelial Progenitor Cells (EPCs) represent a heterogenous cell population, characterized by the ability to differentiate into mature endothelial cells (ECs), which contribute to vascular homeostasis, neovascularization and endothelial repair. A modification of the number and function of EPCs has been described in numerous chronic inflammatory and auto-immune conditions; however, reports that focus on the number and functions of EPCs in RA are characterized by conflicting results, and discrepancies exist among different studies. In the present review, the authors describe EPCs’ role and response to RA-related endothelial modification, with the aim of illustrating current evidence regarding the level of EPCs and their function in this disease, to summarize EPCs’ role as a biomarker in cardiovascular comorbidities related to RA, and finally, to discuss the modulation of EPCs secondary to RA therapy.  相似文献   

9.
10.
Titin is a giant protein in the sarcomere that plays an essential role in muscle contraction with actin and myosin filaments. However, its utility goes beyond mechanical functions, extending to versatile and complex roles in sarcomere organization and maintenance, passive force, mechanosensing, and signaling. Titin’s multiple functions are in part attributed to its large size and modular structures that interact with a myriad of protein partners. Among titin’s domains, the N2A element is one of titin’s unique segments that contributes to titin’s functions in compliance, contraction, structural stability, and signaling via protein–protein interactions with actin filament, chaperones, stress-sensing proteins, and proteases. Considering the significance of N2A, this review highlights structural conformations of N2A, its predisposition for protein–protein interactions, and its multiple interacting protein partners that allow the modulation of titin’s biological effects. Lastly, the nature of N2A for interactions with chaperones and proteases is included, presenting it as an important node that impacts titin’s structural and functional integrity.  相似文献   

11.
Chemotactic cytokines—chemokines—control immune cell migration in the process of initiation and resolution of inflammatory conditions as part of the body’s defense system. Many chemokines also participate in pathological processes leading up to and exacerbating the inflammatory state characterizing chronic inflammatory diseases. In this review, we discuss the role of dendritic cells (DCs) and the central chemokine receptor CCR7 in the initiation and sustainment of selected chronic inflammatory diseases: multiple sclerosis (MS), rheumatoid arthritis (RA), and psoriasis. We revisit the binary role that CCR7 plays in combatting and progressing cancer, and we discuss how CCR7 and DCs can be harnessed for the treatment of cancer. To provide the necessary background, we review the differential roles of the natural ligands of CCR7, CCL19, and CCL21 and how they direct the mobilization of activated DCs to lymphoid organs and control the formation of associated lymphoid tissues (ALTs). We provide an overview of DC subsets and, briefly, elaborate on the different T-cell effector types generated upon DC–T cell priming. In the conclusion, we promote CCR7 as a possible target of future drugs with an antagonistic effect to reduce inflammation in chronic inflammatory diseases and an agonistic effect for boosting the reactivation of the immune system against cancer in cell-based and/or immune checkpoint inhibitor (ICI)-based anti-cancer therapy.  相似文献   

12.
Renal transplantation represents the most favorable treatment for patients with advanced renal failure and it is followed, in most cases, by a significant enhancement in patients’ quality of life. Significant improvements in one-year renal allograft and patients’ survival rates have been achieved over the last 10 years primarily as a result of newer immunosuppressive regimens. Despite these notable achievements in the short-term outcome, long-term graft function and survival rates remain less than optimal. Death with a functioning graft and chronic allograft dysfunction result in an annual rate of 3%–5%. In this context, drug toxicity and long-term chronic adverse effects of immunosuppressive medications have a pivotal role. Unfortunately, at the moment, except for the evaluation of trough drug levels, no clinically useful tools are available to correctly manage immunosuppressive therapy. The proper use of these drugs could potentiate therapeutic effects minimizing adverse drug reactions. For this purpose, in the future, “omics” techniques could represent powerful tools that may be employed in clinical practice to routinely aid the personalization of drug treatment according to each patient’s genetic makeup. However, it is unquestionable that additional studies and technological advances are needed to standardize and simplify these methodologies.  相似文献   

13.
Parkinson’s disease (PD) is a progressive movement disorder caused by nigrostriatal neurodegeneration. Since chronically activated neuroinflammation accelerates neurodegeneration in PD, we considered that modulating chronic neuroinflammatory response might provide a novel therapeutic approach. Glycogen synthase kinase 3 (GSK-3) is a multifunctional serine/threonine protein kinase with two isoforms, GSK-3α and GSK-3β, and GSK-3β plays crucial roles in inflammatory response, which include microglial migration and peripheral immune cell activation. GSK-3β inhibitory peptide (IAGIP) is specifically activated by activated inhibitory kappa B kinase (IKK), and its therapeutic effects have been demonstrated in a mouse model of colitis. Here, we investigated whether the anti-inflammatory effects of IAGIP prevent neurodegeneration in the rodent model of PD. IAGIP significantly reduced MPP+-induced astrocyte activation and inflammatory response in primary astrocytes without affecting the phosphorylations of ERK or JNK. In addition, IAGIP inhibited LPS-induced cell migration and p65 activation in BV-2 microglial cells. In vivo study using an MPTP-induced mouse model of PD revealed that intravenous IAGIP effectively prevented motor dysfunction and nigrostriatal neurodegeneration. Our findings suggest that IAGIP has a curative potential in PD models and could offer new therapeutic possibilities for targeting PD.  相似文献   

14.
Nitric oxide (NO) is a neurotransmitter that mediates the activation and inhibition of inflammatory cascades. Even though physiological NO is required for defense against various pathogens, excessive NO can trigger inflammatory signaling and cell death through reactive nitrogen species-induced oxidative stress. Excessive NO production by activated microglial cells is specifically associated with neuroinflammatory and neurodegenerative conditions, such as Alzheimer’s and Parkinson’s disease, amyotrophic lateral sclerosis, ischemia, hypoxia, multiple sclerosis, and other afflictions of the central nervous system (CNS). Therefore, controlling excessive NO production is a desirable therapeutic strategy for managing various neuroinflammatory disorders. Recently, phytochemicals have attracted considerable attention because of their potential to counteract excessive NO production in CNS disorders. Moreover, phytochemicals and nutraceuticals are typically safe and effective. In this review, we discuss the mechanisms of NO production and its involvement in various neurological disorders, and we revisit a number of recently identified phytochemicals which may act as NO inhibitors. This review may help identify novel potent anti-inflammatory agents that can downregulate NO, specifically during neuroinflammation and neurodegeneration.  相似文献   

15.
Throughout life, it is necessary to adapt to the Earth’s environment in order to survive. A typical example of this is that the daily Earth cycle is different from the circadian rhythm in human beings; however, the ability to adapt to the Earth cycle has contributed to the development of human evolution. In addition, humans can consume and digest Earth-derived foods and use luxury materials for nutrition and enrichment of their lives, as an adaptation to the Earth’s environment. Recent studies have shown that daily lifestyles are closely related to human health; however, less attention has been paid to the fact that obesity due to excessive energy intake, smoking, and alcohol consumption contributes to the development of inflammatory skin diseases. Gluten or wheat protein, smoking and alcohol, sleep disturbance, and obesity drive the helper T (Th)1/Th2/Th17 immune response, whereas dietary fiber and omega-3 fatty acids negatively regulate inflammatory cytokine production. In this review, we have focused on daily lifestyles and the mechanisms involved in the pathogenesis of inflammatory skin diseases.  相似文献   

16.
17.
Cannabis has a long history of medical use. Although there are many cannabinoids present in cannabis, Δ9tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are the two components found in the highest concentrations. CBD itself does not produce typical behavioral cannabimimetic effects and was thought not to be responsible for psychotropic effects of cannabis. Numerous anecdotal findings testify to the therapeutic effects of CBD, which in some cases were further supported by research findings. However, data regarding CBD’s mechanism of action and therapeutic potential are abundant and omnifarious. Therefore, we review the basic research regarding molecular mechanism of CBD’s action with particular focus on its analgesic potential. Moreover, this article describes the detailed analgesic and anti-inflammatory effects of CBD in various models, including neuropathic pain, inflammatory pain, osteoarthritis and others. The dose and route of the administration-dependent effect of CBD, on the reduction in pain, hyperalgesia or allodynia, as well as the production of pro and anti-inflammatory cytokines, were described depending on the disease model. The clinical applications of CBD-containing drugs are also mentioned. The data presented herein unravel what is known about CBD’s pharmacodynamics and analgesic effects to provide the reader with current state-of-art knowledge regarding CBD’s action and future perspectives for research.  相似文献   

18.
Huangjiu usually caused rapid-drunkenness and components such as β-benzyl ethanol (β-be), isopentanol (Iso), histamine (His), and phenethylamine (PEA) have been reported linked with intoxication. However, the destructive effect of these components on gut microbiota and liver is unclear. In this study, we found oral treatment of these components, especially His, stimulated the level of oxidative stress and inflammatory cytokines in liver and serum of mice. The gut microbiota community was changed and the level of lipopolysaccharide (LPS) increased significantly. Additionally, cellular pyroptosis pathway has been assessed and correlation analysis revealed a possible relationship between gut microbiota and liver pyroptosis. We speculated oral His treatment caused the reprogramming of gut microbiota metabolism, and increased LPS modulated the gut-liver interaction, resulting in liver pyroptosis, which might cause health risks. This study provided a theoretical basis for the effect of Huangjiu, facilitating the development of therapeutic and preventive strategies for related inflammatory disorders.  相似文献   

19.
Background: The incidence of Crohn’s disease (CD) is increasing worldwide, and it has currently become a serious public health issue in society. The treatment of CD continues throughout a patient’s lifetime, and therefore, it is necessary to develop new, effective treatment methods, including dietotherapy. The present study aimed to determine the effects of consumption of oat beta-glucans with different molar mass on colon inflammation (colitis) in the early stages of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced CD in an animal model. Methods: Sprague–Dawley rats (control and TNBS-induced CD) were divided into three dietary groups and fed for 3 days (reflecting acute inflammation) or 7 days (reflecting remission) with a feed containing 1% low (βGl) or high (βGh) molar mass oat beta-glucan or a feed without this polysaccharide. The level of colon inflammatory markers and the expression of cytokines and their receptor genes were measured by ELISA and RT-PCR methods, respectively. Results: Acute inflammation or remission (3 or 7 days after TNBS administration, respectively) stages of experimentally induced CD were characterized by an increase in the level of inflammatory markers (IL-1, IL-6, IL-10, IL-12, TNF-α, CRP, MPO, COX, and PGE2) and the disruption of some cytokine signaling pathways as well as macro- and microscopic changes of colon tissue. The consumption of oat beta-glucans reduced the level of inflammatory markers and recovered the signaling pathways and histological changes, with stronger effects of βGl after 7 days of colitis. Conclusions: Dietary oat beta-glucans can reduce colitis at the molecular and organ level and accelerate CD remission.  相似文献   

20.
Tumor necrosis factor (TNF) is a regulator of several chronic inflammatory diseases, such as rheumatoid arthritis. Although anti-TNF biologics have been used in clinic, they render several drawbacks, such as patients’ progressive immunodeficiency and loss of response, high cost, and intravenous administration. In order to find new potential anti-TNF small molecule inhibitors, we employed an in silico approach, aiming to find natural products, analogs of Ampelopsin H, a compound that blocks the formation of TNF active trimer. Two out of nine commercially available compounds tested, Nepalensinol B and Miyabenol A, efficiently reduced TNF-induced cytotoxicity in L929 cells and production of chemokines in mice joints’ synovial fibroblasts, while Nepalensinol B also abolished TNF-TNFR1 binding in non-toxic concentrations. The binding mode of the compounds was further investigated by molecular dynamics and free energy calculation studies, using and advancing the Enalos Asclepios pipeline. Conclusively, we propose that Nepalensinol B, characterized by the lowest free energy of binding and by a higher number of hydrogen bonds with TNF, qualifies as a potential lead compound for TNF inhibitors’ drug development. Finally, the upgraded Enalos Asclepios pipeline can be used for improved identification of new therapeutics against TNF-mediated chronic inflammatory diseases, providing state-of-the-art insight on their binding mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号