首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper a sufficient condition is obtained for the global asymptotic stability of the following system of difference equations $$x_{n + 1} = \frac{{x_n y_{n - 1}^b + 1}} {{x_n + y_{n - 1}^b }}, y_{n + 1} = \frac{{y_n x_{n - 1}^b + 1}} {{y_n + x_{n - 1}^b }}n = 0,1,2 \ldots$$ where the parameter b ∈ [0, ∞) and the initial values (x k , y k ) ∈ (0, ∞) (for k = ?1, 0).  相似文献   

2.
In this paper we consider positive solutions of the following difference equation $$x_{n + 1} = \min \left\{ {\frac{A}{{x_n }},\frac{B}{{x_{n - 2} }}} \right\}, A, B > 0.$$ We prove that every positive solution is eventually periodic. Also, we present here some results concerning positive solutions of the difference equation $$x_{n + 1} = \min \left\{ {\frac{A}{{x_n x_{n - 1} ...x_{n - k} }},\frac{B}{{x_{n - (k + 2)} ...x_{n - (2k + 2)} }}} \right\}, A, B > 0.$$   相似文献   

3.
Получены новые оценк иL-нормы тригонометр ических полиномов $$T_n (t) = \frac{{\lambda _0 }}{2} + \mathop \sum \limits_{k = 1}^n \lambda _k \cos kt$$ в терминах коэффицие нтовλ k и их разностейΔλ k=λ k?λ k?1: (1) $$\mathop \smallint \limits_{ - \pi }^\pi |T_n (t)|dt \leqq \frac{c}{n}\mathop \sum \limits_{k = 0}^n |\lambda _\kappa | + c\left\{ {x(n,\varphi )\mathop \sum \limits_{k = 0}^n \Delta \lambda _\kappa \mathop \sum \limits_{l = 0}^n \Delta \lambda _l \delta _{\kappa ,l} (\varphi )} \right\}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ,$$ где $$\kappa (n,\varphi ) = \mathop \smallint \limits_{1/n}^\pi [t^2 \varphi (t)]^{ - 1} dt, \delta _{k,1} (\varphi ) = \mathop \smallint \limits_0^\infty \varphi (t)\sin \left( {k + \frac{1}{2}} \right)t \sin \left( {l + \frac{1}{2}} \right)t dt,$$ a ?(t) — произвольная фун кция ≧0, для которой опр еделены соответствующие инт егралы. Из (1) следует, что методы $$\tau _n (f;t) = (N + 1)^{ - 1} \mathop \sum \limits_{k = 0}^{\rm N} S_{[2^{k^\varepsilon } ]} (f;t), n = [2^{N\varepsilon } ],$$ являются регулярным и для всех 0<ε≦1/2. ЗдесьS m (f, x) частные суммы ряда Фу рье функцииf(x). В статье исследуется многомерный случай. П оказано, что метод суммирования (о бобщенный метод Рисса) с коэффиц иентами $$\lambda _{\kappa ,l} = (R^v - k^\alpha - l^\beta )^\delta R^{ - v\delta } (0 \leqq k^\alpha + l^\beta \leqq R^v ;\alpha \geqq 1,\beta \geqq 1,v< 0)$$ является регулярным, когда δ > 1.  相似文献   

4.
Говорят, что ряд \(\mathop \sum \limits_{k = 0}^\infty a_k \) сумм ируется к s в смысле (С, gа), gа >?1, если $$\sigma _n^{(k)} - s = o(1),n \to \infty ,$$ в смысле [C,α] λ , α<0, λ>0, если $$\frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n \left| {\sigma _k^{(\alpha - 1)} - s} \right|^\lambda = o(1),n \to \infty ,$$ и в смысле [C,0] λ , λ>0, если $$\frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n \left| {(k + 1)(s_k - 1) - k(s_{k - 1} - 1)} \right|^\lambda = o(1),n \to \infty ,$$ где σ n (α) обозначаетn-ое ч езаровское среднее р яда. Суммируемость [C,α] λ , α>?1, λ ≧1 о значает, что $$\mathop \sum \limits_{k = 0}^\infty k^{\lambda - 1} \left| {\sigma _k^{(\alpha )} - \sigma _{k - 1}^{(\alpha )} } \right|^\lambda< \infty .$$ В данной статье содер жится продолжение ис следований свойств [C,α] λ -суммиру емо сти, которые начали Винн, Х ислоп, Флетт, Танович-М иллер и автор, в частности свя зей между указанными методами суммирования. Наконец, даны некотор ые простые приложени я к вопросам суммируемости ортог ональных рядов.  相似文献   

5.
Let f and g be distributions and let gn = (g * δn)(x), where δn (x) is a certain converging to the Dirac delta function. The non-commutative neutrix product fog of f and g to be the limit of the sequence {fgn }, provided its limit h exists in the sense that sequence is defined N-lim n-∞(f(x)g,, (x), φ(x)〉 = (h(x), φ(x)},for all functions p in 2. It is proved that (x^λ+1n^px+)0(x^μ+1n^qx+)=x+^λμ1n^p+qx+,(x^λ-1n^qx-)=x-^λ+μ1n^p+qx-,for λ+μ〈-1; λ,μ, λ+μ≠-1,-2…and p,q=0,1,2……  相似文献   

6.
Let λkbe the k-th Dirichlet eigenvalue of totally characteristic degenerate elliptic operator-ΔB defined on a stretched cone B0 ■ [0,1) × X with boundary on {x1 = 0}. More precisely,ΔB=(x1αx1)2+ α2x2+ + α2xnis also called the cone Laplacian. In this paper,by using Mellin-Fourier transform,we prove thatλk Cnk2 n for any k 1,where Cn=(nn+2)(2π)2(|B0|Bn)-2n,which gives the lower bounds of the Dirchlet eigenvalues of-ΔB. On the other hand,by using the Rayleigh-Ritz inequality,we deduce the upper bounds ofλk,i.e.,λk+1 1 +4n k2/nλ1. Combining the lower and upper bounds of λk,we can easily obtain the lower bound for the first Dirichlet eigenvalue λ1 Cn(1 +4n)-12n2.  相似文献   

7.
We consider elliptic self-adjoint differential operators L of order 2m in a bounded region D? Rn. An asymptotic formula for the function N(λ) = \(N(\lambda ) = \sum\limits_{\lambda _n< \lambda } 1 \) the number of eigenvalues of the operator L less than A. is proved: $$N(\lambda ) = M_0 \lambda ^{n/2m} + o(\lambda ^{n/2m} )$$ whereλ → + ∞ and M0 is the following constant: $$M_0 = \frac{{V_D }}{{(2\pi )^n \Gamma (1 + n/2m)}}\int_{R_n } {e^{ - L(s)} ds} .$$   相似文献   

8.
Let $ \mathcal{P}_n $ denote the set of algebraic polynomials of degree n with the real coefficients. Stein and Wpainger [1] proved that $$ \mathop {\sup }\limits_{p( \cdot ) \in \mathcal{P}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{ip(x)} }} {x}dx} } \right| \leqslant C_n , $$ where C n depends only on n. Later A. Carbery, S. Wainger and J. Wright (according to a communication obtained from I. R. Parissis), and Parissis [3] obtained the following sharp order estimate $$ \mathop {\sup }\limits_{p( \cdot ) \in \mathcal{P}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{ip(x)} }} {x}dx} } \right| \sim \ln n. $$ . Now let $ \mathcal{T}_n $ denote the set of trigonometric polynomials $$ t(x) = \frac{{a_0 }} {2} + \sum\limits_{k = 1}^n {(a_k coskx + b_k sinkx)} $$ with real coefficients a k , b k . The main result of the paper is that $$ \mathop {\sup }\limits_{t( \cdot ) \in \mathcal{T}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{it(x)} }} {x}dx} } \right| \leqslant C_n , $$ with an effective bound on C n . Besides, an analog of a lemma, due to I. M. Vinogradov, is established, concerning the estimate of the measure of the set, where a polynomial is small, via the coefficients of the polynomial.  相似文献   

9.
The paper describes the general form of an ordinary differential equation of an order n + 1 (n ≥ 1) which allows a nontrivial global transformation consisting of the change of the independent variable and of a nonvanishing factor. A result given by J. Aczél is generalized. A functional equation of the form $f\left( {s,w_{00} \upsilon _0 ,...,\sum\limits_{j = 0}^n {w_{nj\upsilon _j } } } \right) = \sum\limits_{j = 0}^n {w_{n + 1j\upsilon j} + w_{n + 1n + 1} f\left( {x,\upsilon ,\upsilon _1 ,...,\upsilon _n } \right),}$ where $w_{n + 10} = h\left( {s,x,x_1 ,u,u_1 ,...,u_n } \right),w_{n + 11} = g\left( {s,x,x_1 ,...,x_n ,u,u_1 ,...,u_n } \right){\text{ and }}w_{ij} = a_{ij} \left( {x_i ,...,x_{i - j + 1} ,u,u_1 ,...,u_{i - j} } \right)$ for the given functions a ij is solved on $\mathbb{R},u \ne {\text{0}}$ .  相似文献   

10.
Пусть {λ n 1 t8 — монотонн ая последовательнос ть натуральных чисел. Дл я каждой функции fεL(0, 2π) с рядом Фурье строятся обобщенные средние Bалле Пуссена $$V_n^{(\lambda )} (f;x) = \frac{{a_0 }}{2} + \mathop \sum \limits_{k = 1}^n (a_k \cos kx + b_k \sin kx) + \mathop \sum \limits_{k = n + 1}^{n + \lambda _n } \left( {1 - \frac{{k - n}}{{\lambda _n + 1}}} \right)\left( {a_k \cos kx + b_k \sin kx} \right).$$ Доказываются следую щие теоремы.
  1. Если λn=o(n), то существуе т функция fεL(0, 2π), для кот орой последовательность {Vn (λ)(?;x)} расходится почти вс юду.
  2. Если λn=o(n), то существуе т функция fεL(0, 2π), для кот орой последовательность $$\left\{ {\frac{1}{\pi }\mathop \smallint \limits_{ - \pi /\lambda _n }^{\pi /\lambda _n } f(x + t)\frac{{\sin (n + \tfrac{1}{2})t}}{{2\sin \tfrac{1}{2}t}}dt} \right\}$$ расходится почти всю ду
.  相似文献   

11.
When k≥k0=10 Mr2n log (rn) we have for the trigonometric integral $$J_n (k,P) = \int_E {|S(A)|^{2k} dA,} $$ where $$\begin{gathered} S(A) = \sum _{x_1 = 1}^P \cdots \sum _{x_r = 1}^P \exp (2\pi if_A (x_1 , \ldots ,x_r )), \hfill \\ f_A (x_1 , \ldots ,x_r ) = \sum _{t_1 = 0}^n \cdots \sum _{t_r = 0}^n \alpha _{t_1 \cdots l_r } x_1^{t_1 } \cdots x_{r^r }^t \hfill \\ \end{gathered} $$ and E is the M-dimensional unit cube, the asymptotic formula $$J_n (k,P) = \sigma \theta P^{2kr - rnM/2} + O(P^{2kr - rnM/2 - 1/(2M)} ) + O(P^{2kr - rnM/2 - 1/(500r^2 \log (rn))} ),$$ where σ is a singular series and θ is a singular integral.  相似文献   

12.
стАтьь ьВльЕтсь пРОД ОлжЕНИЕМ пРЕДыДУЩЕИ ОДНОИМЕННОИ РАБОты АВтОРА, гДЕ ИжУ ЧАлсь пОРьДОк ВЕлИЧИН пРИ УслОВИьх, ЧтО α>-1/2, Рα >- 1 И ЧтО МАтРИцАt nk УДОВлЕтВОРьЕт НЕкОт ОРОМУ УслОВИУ РЕгУльРНОстИ. жДЕсь ДОкАжыВАЕтсь, Ч тО ЕслИfH Ω, тО ВыпОлНь Етсь ОцЕНкА $$\left\{ {\frac{1}{{\lambda _n }}\mathop \Sigma \limits_{k = n - \lambda _n + 1}^n \left| {\sigma _k^\alpha \left( x \right) - f\left( x \right)} \right|^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} = O\left( {\left\{ {\frac{1}{{\lambda _n }}\mathop \Sigma \limits_{k = n - \lambda _n + 1}^n \left( {\frac{1}{k}\mathop \smallint \limits_{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}}^{2\pi } \frac{{\omega \left( t \right)}}{{t^2 }}dt} \right)^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} + \left( {\frac{{\lambda _n }}{n}} \right)^\alpha \omega \left( {\frac{1}{n}} \right)} \right)$$ 1=1, λn+1n≦1), А тАкжЕ ЧтО Ёт А ОцЕНкА ОкОНЧАтЕльН А В сВОИх тЕРМИНАх; пОДОБ НыИ РЕжУль-тАт спРАВЕДлИВ тАкжЕ И Дль сОпРьжЕННОИ ФУНкцИИ . ДОкАжыВАЕтсь, ЧтО Усл ОВИьα>?1/2 И>?1, кОтОРыЕ Б ылИ НАлОжЕНы В УпОМьНУтО И ВышЕ ЧАстИ I, сУЩЕстВЕН Ны.  相似文献   

13.
In this paper, we give a Landesman-Lazer type theorem for periodic solutions of the asymmetric 1-dimensional p-Laplacian equation -(|x'|^p-2x')'=λ|x|^p-2x++μ|x|^p-2x-+f(t,x)with periodic boundary value.  相似文献   

14.
In this paper, we consider the nonlocal problem of the form ut-Δu = (λe-u)/(∫Ωe-udx)2,x ∈Ω, t0 and the associated nonlocal stationary problem -Δv = (λe-v)/(∫Ωe-vdx)2, x ∈Ω,where λ is a positive parameter. For Ω to be an annulus, we prove that the nonlocal stationary problemhas a unique solution if and only if λ 2| Ω| 2 , and for λ = 2|Ω|2, the solution of the nonlocal parabolic problem grows up globally to infinity as t →∞.  相似文献   

15.
The aim of this paper is to investigate the global stability and periodic nature of the positive solutions of the difference equation $$x_{n + 1} = \frac{{A + Bx_{n - 2k - 1} }} {{C + D\prod\limits_{i = 1}^k {x_{n - 2i} } }}, n = 0,1,2, \ldots ,$$ where A, B are nonnegative real numbers, C,D > 0 and l, k are nonnegative integers such that lk.  相似文献   

16.
Timofeev  N. M.  Khripunova  M. B. 《Mathematical Notes》2004,76(1-2):244-263
Suppose that $${g\left( n \right)}$$ is an additive real-valued function, W(N) = 4+ $$\mathop {\min }\limits_\lambda $$ ( λ2 + $$\sum\limits_{p < N} {\frac{1}{2}} $$ min (1, ( g(p) - λlog p)2), E(N) = 4+1 $$\sum\limits_{\mathop {p < N,}\limits_{g(p) \ne 0} } {\frac{1}{p}.} $$ In this paper, we prove the existence of constants C1, C2 such that the following inequalities hold: $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) \in [a,a + 1)} \right\}} \right| \leqslant \frac{{C_1 N}}{{\sqrt {W\left( N \right)} }},$ $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) = a} \right\}} \right| \leqslant \frac{{C_2 N}}{{\sqrt {E\left( N \right)} }},$ . The obtained estimates are order-sharp.  相似文献   

17.
In this paper, we consider the higher order nonlinear neutral delay difference equation of the form $$\Delta ^r (x_n + px_{n - \tau } ) + f(n,x_{n - \sigma _1 (n)} ,x_{n - \sigma _2 (n)} ,...,x_{n - \sigma _m (n)} ) = 0.$$ We give an integrated classification of nonoscillatory solutions of the above equation according to their asymptotic behaviours. Necessary and sufficient conditions for the existence of nonoscillatory solutions with designated asymptotic properties are also established.  相似文献   

18.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

19.
In 2011, Makanin obtained the general solution of the symmetric equation $$x_1 x_2 \cdots x_{n - 1} x_n = x_n x_{n - 1} \cdots x_2 x_1$$ in a free monoid. In the present paper, a generalization of this result is given. Namely, we shall describe the general solution of the so-called pseudosymmetric equations in a free monoid which are obtained from the symmetric equations by transposing one (any) pair of adjacent variables.  相似文献   

20.
We show that the number of elements in FM(1+1+n), the modular lattice freely generated by two single elements and an n-element chain, is 1 $$\frac{1}{{6\sqrt 2 }}\sum\limits_{k = 0}^{n + 1} {\left[ {2\left( {\begin{array}{*{20}c} {2k} \\ k \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {2k} \\ {k - 2} \\ \end{array} } \right)} \right]} \left( {\lambda _1^{n - k + 2} - \lambda _2^{n - k + 2} } \right) - 2$$ , where \(\lambda _{1,2} = {{\left( {4 \pm 3\sqrt 2 } \right)} \mathord{\left/ {\vphantom {{\left( {4 \pm 3\sqrt 2 } \right)} 2}} \right. \kern-0em} 2}\) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号