首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 224 毫秒
1.
为了制备高质量表面周期结构,利用法布里-珀罗腔对飞秒激光进行时域整形,输出子脉冲间隔在1~300 ps内灵活可调的飞秒激光脉冲串,在硅表面诱导亚波长周期条纹。实验结果显示,利用飞秒激光脉冲串诱导得到的亚波长周期条纹明显优于原始高斯光诱导的亚波长周期条纹。利用子脉冲间隔为100 ps的脉冲串诱导的亚波长条纹最佳,条纹周期为1008 nm,结构取向角为2.8°,边缘粗糙度为3.9 nm,可达到光刻工艺的标准。  相似文献   

2.
飞秒激光诱导金属表面周期性自组织微纳米条纹结构,在调控热辐射源、摩擦、超亲水性、超疏水性和打标等方面具有广泛的应用前景.研究了800nm飞秒激光诱导金属钨表面周期性自组织结构的形成规律和形成机理.采用Sipe干涉模型和有限时域差分法,仿真了第1个飞秒激光脉冲刻蚀后随机粗糙表面引起的激光电磁场能量表面分布和第20个脉冲后低空间频率条纹结构引起的激光电磁场能量表面分布.揭示了低空间频率条纹与高空间频率条纹的形成机理,考察了表面微观形貌的演化和条纹周期随着脉冲增多而递减的现象.  相似文献   

3.
飞秒激光诱导金属表面周期性自组织微纳米条纹结构,在调控热辐射源、摩擦、超亲水性、超疏水性和打标等方面具有广泛的应用前景.研究了800nm飞秒激光诱导金属钨表面周期性自组织结构的形成规律和形成机理.采用Sipe干涉模型和有限时域差分法,仿真了第1个飞秒激光脉冲刻蚀后随机粗糙表面引起的激光电磁场能量表面分布和第20个脉冲后低空间频率条纹结构引起的激光电磁场能量表面分布.揭示了低空间频率条纹与高空间频率条纹的形成机理,考察了表面微观形貌的演化和条纹周期随着脉冲增多而递减的现象.  相似文献   

4.
李志明  王玺  聂劲松 《物理学报》2017,66(10):105201-105201
基于Sipe-Drude模型和表面等离子体激元(SPP)的干涉理论分别对单脉冲飞秒激光诱导硅表面形成低频率周期性波纹进行分析研究.探究了波长800 nm、脉宽150 fs的单个飞秒激光烧蚀硅造成不同激发水平下波纹形貌的变化,考虑到材料的光学性质变化(由Drude模型得到的介电常数变化),引入包含双温方程的电子数密度模型.计算结果表明,Sipe-Drude和SPP理论都适用于分析和解释高激发态下周期性波纹,但Sipe-Drude理论更适合分析更为广泛的周期性波纹结构.同时,波纹延伸方向总是垂直于入射激光偏振方向,其空间周期略小于激光波长,并受到入射激光通量的影响.在激光通量为0.38 J/cm~2时,波纹周期达到最小值.另外,还得到了不同入射角度的波纹周期变化情况,并在不同偏振态下随入射角度增大时波纹周期呈现相反的变化趋势.该研究对于理解飞秒激光造成硅表面形成周期结构及其在加工硅材料领域具有重要参考意义.  相似文献   

5.
肖啸  肖志刚  许德富  邓迟  刘晓云 《光子学报》2014,40(9):1381-1385
提出一种利用厚金属狭缝阵列耦合激发表面等离子激元制作非周期图形的纳米光刻模型.采用时域有限差分电磁场模拟仿真软件研究了厚金属狭缝阵列中表面等离子激元的激发、模式选择以及光刻胶中的光场分布.结果表明,通过优化厚金属狭缝阵列结构参量和匹配介质参量可有效抑制表面等离子激元在光栅狭缝出口处的发散,增加表面等离子激元的穿透深度,可获得高分辨率的较大曝光深度的周期和非周期纳米图形,可为纳米激光直写技术提供有益的借鉴.  相似文献   

6.
飞秒激光诱导ZnO :Al薄膜周期结构及其光致发光特性   总被引:1,自引:1,他引:0  
利用单束800 run飞秒激光在掺杂了Al的ZnO薄膜中制备了纳米周期条纹结构.研究了不同能流密度的飞秒激光在照射不同的时间后,表面纳米周期结构的变化规律及其形成机制.利用He-Ge激光器作为激发光源,研究了ZnO:Al薄膜的光致发光特性及其与纳米周期结构的关系.结果表明,近带隙发光增强的主要原因是800 nm飞秒激光...  相似文献   

7.
超短超快激光脉冲的出现为人们探索原子分子中超快电子动力学过程提供了强有力的工具.阿秒脉冲和强激光脉冲电场整形技术能够获得电子波包在亚飞秒时间尺度的动力学信息,发展出了一系列阿秒超快光谱学技术,如阿秒条纹相机、阿秒瞬态吸收谱等,成功地应用于原子、分子和固体中电子运动的探测.其中双色激光场就是通过电场整形技术实现电子相干运动控制和探测的一种重要手段,本文综述了中科院上海光机所强场激光物理国家重点实验室近几年来在双色场控制与测量原子分子超快过程方面的研究工作.  相似文献   

8.
利用偏振垂直的双束延时蓝色飞秒激光(400 nm)经柱透镜聚焦扫描钼表面,获得了二维矩形周期排列的方形和(椭)圆形阵列结构,以及六边形周期排列的三角形阵列结构。最小结构尺寸和周期达到100 nm和280 nm。研究发现双束飞秒激光的能量密度和能量比是不同类型结构形成及形貌转化的关键参数。通过优化激光参数,实现了圆形和三角形阵列结构的大面积均匀制备。两种周期排布的阵列结构的形成与双束延时飞秒激光与材料作用的超快动力学过程之间的瞬态关联作用以及作用过程中表面等离激元波的共线和非共线激发密切相关。该二维周期阵列结构加工方法及理论可拓展至其它硬质金属和半导体硅表面。  相似文献   

9.
我们实验上发展了基于飞秒激光旋转相干光谱的整形飞秒激光转动动力学调控方法,通过脉冲整形技术调控激发脉冲的光谱相位,从而实现对飞秒激光作用下转动态相干激发过程中复原信号及转动布居数的调控. 研究了飞秒激光旋转相干光谱对激光频谱相位的响应机制,突出了飞秒激光频谱相位在气相分子转动态相干激发中的重要作用. 为飞秒激光作用下生物大分子和团簇鉴别及结构探测研究提供了新的参考.  相似文献   

10.
不同烧蚀条件下飞秒激光脉冲诱导ZnO纳米结构研究   总被引:6,自引:5,他引:1  
烧蚀条件对飞秒激光脉冲诱导氧化锌纳米结构有重要影响.研究了800 nm,150 fs,250 kHz的飞秒激光脉冲分别在空气中,去离子水中以及无水乙醇中垂直聚焦于氧化锌晶体表面,诱导形成不同形态的纳米结构.实验结果表明,在空气中利用飞秒激光脉冲辐照样品表面,形成了周期为180 nm的纳米线;在去离子水中辐照诱导形成了由氧化锌纳米线聚集而成的"纳米球";在无水乙醇中形成出现分叉结构的纳米线.拉曼光谱分析辐照前后晶体晶相结果表明,形成的纳米结构相对于辐照前特征峰437 cm-1强度有所下降,在570 cm-1处的峰值则显著增强.分析了在各种烧蚀条件下诱导形成纳米结构的演化过程以及物理机理.  相似文献   

11.
Zhao QZ  Malzer S  Wang LJ 《Optics letters》2007,32(13):1932-1934
The evolution of surface morphology of tungsten irradiated by single-beam femtosecond laser pulses is investigated. Ripplelike periodic structures have been observed. The period of these ripples does not show a simple relation to the wavelength and angle of incidence. The orientation of ripples is aligned perpendicularly to the direction of polarization for linearly polarized light. Surprisingly, we find that the alignment of the ripple structure turned left or right by 45 degrees with respect to the incident plane when using right and left circularly polarized light, respectively. The period of the ripple can be controlled by the pulse energy, the number of pulses, and the incident angle. We find a clear threshold for the formation as a function of pulse energy and number of pulses. The mechanism for the ripple formation is discussed, as well as potential applications in large-area structuring of metals.  相似文献   

12.
Formation of periodic subwavelength ripples on a metallic tungsten surface is investigated through a line-scribing method under the irradiation of 800?nm, 50 fs to 8 ps ultra-short laser pulses. The distinctive features of the induced ripple structures are described in detail with different laser parameters. Experimental measurements reveal that with gradual decrease of the laser fluence, the pulse duration or the scanning speed, the ripple period is inclined to reduce but the ripple depth tends to become pronounced. Theoretical analyses suggest that the transient dielectric function change of the tungsten surface mainly originates from the nonequilibrium distribution of electrons due to the d-band transitions. A sandwich-like physical model of air?Cplasma?Ctarget is proposed and the excitation of a surface plasmon polaritonic (SPP) wave is supposed to occur on the interface between the metallic target and the electron plasma layer. Formation of ripples can be eventually attributed to the laser?CSPP interference. Theoretical interpretations are consistent with the experimental observations.  相似文献   

13.
We report the formation dynamics of periodic ripples on Ga As induced by femtosecond laser pulses(800 nm, 50 fs) via a collinear time-resolved imaging technique with a temporal resolution of 1 ps and a spatial resolution of 440 nm. The onset of periodic ripples emerges in the initial tens of picoseconds in the timescale of material ejection. The periodic ripples appear after irradiation of at least two pump pulses at surface defects produced by the first pulse and the ripple positions kept stable until the formation processes complete. The formation mechanisms of laser-induced periodic ripples are also discussed.  相似文献   

14.
Ultrashort laser pulse interaction with the surface of silicon wafer in air and water environments is investigated. Ti:sapphire laser with 40 femtosecond laser pulses at 790 nm and 10 Hz repetition rate was used. The ablation threshold of the silicon surface in the air was determined to be about 0.28 J cm?2. The surface morphology was studied by using scanning electron microscope images. The size of the regular ripples formed in the air environment is a little smaller than the laser wavelength. Due to the nonlinear interaction and self-focusing before the target, the ripples size reduced to nearly a half of the laser wavelength in the water. Moreover, the spikes’ structure formation and their diameter in air and water were studied. Two regimes for spike formation in water are proposed that can explain the anomalous decrease of the spikes’ diameter in higher fluence. During the interaction of single linearly polarized femtosecond laser pulse with the surface, an irregular ripple formation that called circular ripple is observed. This structure which is a result of radiation pressure implies to the surface by the end of the pulse. A new physical model for interpretation of the circular ripples formation based on the ponderomotive force of an ultrashort pulse laser is proposed which can predict the size of the circular ripples. The calculated results are in accordance with our experimental findings.  相似文献   

15.
We study the initial instability of flat sand surface and further nonlinear dynamics of wind ripples. The proposed continuous model of ripple formation allowed us to simulate the development of a typical asymmetric ripple shape and the evolution of a sand ripple pattern. We suggest that this evolution occurs via ripple merger preceded by several soliton-like interaction of ripples.  相似文献   

16.
Ripple formation in consequence of ultrashort laser pulse irradiation of materials is a well-known phenomenon. We have investigated the formation of ripples in various metals, i.e. steel, tungsten carbide hard metal, as well as in superhard ta-C films, where we used femtosecond laser pulses of 775 nm and 387 nm mean wavelength and 150 fs pulse duration. The aim was to investigate how the ripple parameters depend on irradiation parameters, and if such ripples have a potentiality for applications. In the paper, we will show that on smooth surfaces the ripple orientation is perpendicular to the electric field vector of the linearly polarized laser beam, as is well-known. Moreover, it will be shown that the ripple period decreases with decreasing laser wavelength and/or increasing angle of incidence of the laser beam on the substrate. By using optimum parameters large areas of the materials and films can be rippled swiftly, which would be important for applications. For instance, the improvement of frictional and wear behavior of tribologically stressed surfaces by ripples was investigated on ta-C coated steel surfaces.  相似文献   

17.
In this work, we report the progressive formation of first nanoparticles, next fine ripples, and eventually coarse ripples during the irradiation of single-crystal 6H-SiC surfaces with increasing number of femtosecond laser pulses (λ = 515 nm, τ = 250 fs, repetition rate = 100 kHz). At laser fluences greater than the single-pulse ablation threshold, nanoparticles were produced on the surface by the first few pulses over which fine ripple patterns overlapped at increased pulse numbers. As the pulse number was further increased over ten, the surface was gradually transformed into a coarse ripple–covered one. At laser fluence below the threshold, however, only fine ripples were formed nonuniformly.  相似文献   

18.
This study investigates the effects of pulse energy distributions on subwavelength ripple structures (the ablation shapes and subwavelength ripples) using the plasma model with the consideration of laser particle–wave duality. In the case studies, the laser pulse (800 nm, 50 fs) trains consist of double pulses within a train with the energy ratios of 1:2, 1:1, and 2:1. Localized transient electron densities, material optical properties, and surface plasmon generation are strongly affected by the energy distributions. Hence, the adjustment of the ablation shape and subwavelength ripples can be achieved based on localized transient electron dynamics control during femtosecond laser pulse train processing of dielectrics. The simulation results show that better, more uniform structures, in terms of ablation shapes and subwavelength ripples, can be easily formed at a lower fluence or subpulse energy ratio of 1:1 with a fixed fluence. It is also found that pulse trains at a 1:1 energy ratio are preferred for drilling high-aspect-ratio microholes or microchannels.  相似文献   

19.
In this paper we review recent highlights of our research on the interaction of ultrafast laser pulses with surfaces with the aim of analyzing the fundamental mechanisms during micro/nanoprocessing of the irradiated surfaces and investigate the perspectives and applications arising from the irradiation of novel complex and functional materials with simple as well as temporally modulated femtosecond laser pulses. Our results on the irradiation of Si and ZnO surfaces show that the crater size and the ripple formation can be controlled by irradiation with properly temporally shaped laser pulses. Together with simulations of the dynamics of the phase changes of the material’s surface we show the potential for understanding and tailoring the engineering of smart optical materials at the micro- and nanoscale intended for novel optoelectronic applications and devices.  相似文献   

20.
The periodic ripple structures on wolfram and titanium surfaces are induced experimentally by linear polarized femtosecond laser pulses at small incident angles. The structural features show a material difference in the s- and p-polarized laser irradiation. The interspace between the ripples increases significantly for p-polarized laser irradiation when it exceeds a threshold angle, and the ripples' periodicities are larger than the wavelength of the incident p-polarized femtosecond laser; however, no significant change in the period of the ripples is observed with increasing incident angle for s-polarized laser irradiation. To explain these phenomena we propose a resonant absorption mechanism, by which the experimental observations can be interpreted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号