首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 330 毫秒
1.
龙建  王诏玉  赵宇龙  龙清华  杨涛  陈铮 《物理学报》2013,62(21):218101-218101
采用晶体相场法研究了单轴拉伸下三角相双晶变形过程及机理, 并重点分析了小角对称与非对称晶界和大角对称与非对称晶界在变形过程中的演化及微观机理, 变形过程中应力方向与初始晶界方向平行. 结果表明, 小角对称晶界由柏氏矢量夹角呈60°的两种刃型位错组成, 变形过程中不同类型的位错运动方向相反, 并各自与另一晶界上同一类型位错相互吸引以致部分位错发生湮没; 小角非对称晶界上的位错类型单一, 在应力作用下先沿水平方向攀移, 后各自分解成柏氏矢量约呈120°的两位错, 并通过位错运动和湮没最终形成理想单晶; 大角晶界在应力的作用下先保持水平状态而后锯齿化并发射位错, 伴随着位错运动和湮没, 最终大角非对称晶界发生分解, 而大角对称晶界则重新平直化, 表明大角对称晶界比大角非对称晶界更稳定, 这与实验和分子动力学模拟结果一致. 关键词: 晶体相场 双晶 晶界 对称性  相似文献   

2.
用嵌入位错线法和重合位置点阵法构建含有小角度和大角度倾斜角的双晶氧化锌纳米结构.用非平衡分子动力学方法模拟双晶氧化锌在不同倾斜角度下的晶界能、卡皮查热阻,并研究了样本长度和温度对卡皮查热阻和热导率的影响.模拟结果表明,晶界能在小角度区域随倾斜角线性增加,而在大角度区域达到稳定,与卡皮查热阻的变化趋势一致.热导率随样本长度的增加而增加,卡皮查热阻表现出相反的趋势.然而随着温度的增加,热导率和卡皮查热阻都减小.通过比较含5.45°和38.94°晶界样本的声子态密度,发现声子光学支对热传导的影响不大,主要由声子声学支贡献,大角度晶界对声子散射作用更强,声学支波峰向低频率移动.  相似文献   

3.
由不同取向差的纯Al双晶的内耗实验观察到,不同类型晶界的弛豫参量有明显差别.用耦合模型对内耗数据的分析表明,小角度晶界内耗的基本机制是位错攀移,而大角度晶界内耗的基本机制是晶界扩散.在此基础上,对多晶中晶界内耗的一些特征也作了解释.  相似文献   

4.
单向拉伸作用下Cu(100)扭转晶界塑性行为研究   总被引:1,自引:0,他引:1       下载免费PDF全文
应用分子动力学方法研究了在不同扭转角度下的Cu(100)失配晶界位错结构,以及不同位错结构对晶界强度的影响.模拟结果表明:小角度扭转晶界上将形成失配位错网,失配位错密度随着晶粒之间的失配扭转角度的增加而增加.变形过程中,位错网每个单元中均产生位错形核扩展.位错之间的塞积作用影响晶界的屈服强度:随着位错网格密度的增加,位错之间的塞积作用增强,界面的屈服强度得到提高.大角度扭转晶界将形成面缺陷,在变形中位错由晶界角点处形核扩展,此时由于面缺陷位错开动应力趋于一致,因此晶界的临界屈服强度趋于定值. 关键词: 扭转晶界 失配位错网 强化机理 分子动力学  相似文献   

5.
采用分子动力学模拟方法研究了在单轴拉伸载荷下,界面旋转角度和氢原子浓度对含有非对称倾斜Σ5晶界的双晶α-铁力学性能的影响.研究结果表明,双晶体的塑性变形主要是通过原始BCC相转变为亚稳态FCC相,再进而转变成新BCC相的过程来实现的,且该变形机制不依赖于氢原子的浓度.氢原子的引入使得双晶α-铁在塑性变形过程中,BCC-FCC的相变更容易发生,但在塑性变形后期氢原子阻碍了FCC相向BCC相的转变.此外,双晶α-铁的峰值应力随着氢浓度的增加而减小.  相似文献   

6.
基于密度泛函理论,计算了bcc Fe中Σ5(310)晶界平面位置处He_nV(n≤2)团簇的性质,同时以此数据结果为判断标准,分析了两种简化晶界模型的优劣,这两种简化晶界模型分别是自由表面晶界模型和重构的双晶界模型.选取三种不同取向的He_2V团簇,分别从结构、能量、计算资源消耗等多种角度进行对比,分析了所建模型的合理性与可行性.结果表明,两种简化模型都能够显著提高计算效率,但是自由表面晶界模型与初始完整晶界模型的计算结果更加吻合.同种简化方法及思路亦可应用于诸如非对称晶界的更复杂的晶界结构.  相似文献   

7.
由不同取向差的纯Al双晶的内耗实验观察到,不同类型晶界的弛豫参量有明屁差别。用耦合模型对内耗数据的分析表明,小角度晶界内耗的基本机制是位错攀移,而大角度晶界内耗的基本机制是晶界扩散。在此基础上,对多晶中晶界内耗的一些特征也作了解释。  相似文献   

8.
马文  祝文军  张亚林  经福谦 《物理学报》2011,60(6):66404-066404
利用分子动力学方法研究了不同晶粒度的纳米多晶铁在冲击压缩下的结构相变过程,模拟结果表明:纳米多晶铁的冲击结构相变(由体心立方(bcc)结构 α 相到六角密排(hcp)结构 ε 相)发生的临界冲击应力在15 GPa左右.纳米多晶铁在经过弹性压缩变形后,晶界导致的塑性变形开始发生,然后大多数相变从晶界成核并最终发展为大规模相变.不同变形过程在应力和粒子速度剖面上能得到清晰的体现,并通过微观原子结构分析分辨.冲击压缩后的微观结构以晶界原子和以fcc结构原子充当孪晶界的hcp原子为主.晶粒度明显影响晶界变形及相变 关键词: 冲击相变 纳米多晶铁 冲击波 分子动力学  相似文献   

9.
纯物质晶界结构及运动的晶体相场法模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
任秀  王锦程  杨玉娟  杨根仓 《物理学报》2010,59(5):3595-3600
采用晶体相场模型,分别模拟了纯物质小角度晶界和大角度晶界结构及变形过程中的晶粒转动及晶界迁移.结果表明,小角度晶界迁移的主要机理是构成晶界的位错的滑移和攀移,而大角度晶界的迁移主要依靠晶界两侧原子的跳动及晶界位错等缺陷的运动. 关键词: The phase field crystal model was used to simulate the structure of the small angle and the large angle grain boundary (GB) the grain rotation and the GB migration during deformation. Simulated results show that the dislocation glide and climb are the ma  相似文献   

10.
采用率相关的晶体塑性本构模型研究了冲击荷载作用下晶体取向对面心立方金属内部孔洞增长的影响。利用VUMAT子程序,将率相关晶体塑性本构模型嵌入ABAQUS有限元软件中,分析了单晶晶内孔洞、双晶晶界孔洞和三角晶界孔洞的增长行为,结果显示:孔洞的变形模式与晶体取向、晶界位置(冲击加载方向与晶界的相对方位)、加载方向相关,晶体的滑移线模型与晶界位置之间的关系可以反映孔洞增长方向。对于晶内孔洞,加载方向越接近[011],孔洞开始增长变形时间越晚,但孔洞的总体增长变形越大;加载方向越接近[111],孔洞开始增长变形时间越早,但孔洞的总体增长变形越小。对于晶界处孔洞,晶界位置影响孔洞的部分变形,但不会影响总体变形。晶体受冲击之后,若孔洞增长方向沿晶内,则晶界会促进孔洞沿晶内增长;若增长方向沿晶界,则晶界会促进孔洞沿晶界方向增长,抑制其向晶内增长。  相似文献   

11.
Deformation behaviors of bicrystalline and nano-polycrystalline structures of various tilt angles and inclination angles in two dimensions are investigated in detail using a two-mode phase field crystal model.The interaction between grain boundary(GB)and dislocation is also examined in bicrystals and nano-polycrystals that both contain asymmetric and symmetric tilt GBs,with energy analysis being carried out to analyze these processes.During deformation simulations,we assume the volume of each simulation cell at every time step is coincident with that of the initial state just before deformation.Our simulation results show that the behaviors of symmetric and asymmetric GBs in bicrystals and nano-polycrystals differ from each other depending on tilt angle and inclination angle.A new dislocation emission mechanism of interest is observed in bicrystals which contain low angle symmetric tilt GBs.Low angle GB has a higher mobility relative to high angle GB in both bicrystalline and nano-polycrystalline structures,as does asymmetric GB to symmetric GB.The generation,motion,pileup and annihilation of dislocations,grain rotation and grain coalescence are observed,which is consistent with the simulation results obtained by molecular dynamics.These simulation results can provide strong guidelines for experimentation.  相似文献   

12.
B. Syed  D. Catoor  R. Mishra 《哲学杂志》2013,93(12):1499-1522
Magnesium bicrystals were grown with symmetric and asymmetric tilt boundaries about the [10–10] axis using the vertical Bridgman technique. Isothermal constant load tensile tests were conducted on these bicrystals in the temperature range 300–500°C and relative displacements of the two grains were measured to obtain an appreciation for grain boundary motion characteristics. Coupled grain boundary motion was noted in almost all cases with the degree of tangential motion versus migration changing with tilt misorientation, temperature and applied stress. Specifically, within the family of symmetric bicrystals evaluated, a minimum in grain boundary displacement in the specimen plane was observed at a tilt misorientation of 20°. In specific stress/temperature regimes, rigid body sliding was observed for the particular case of a 35° asymmetric tilt misorientation. The ease of basal and prism slip in magnesium at the temperatures considered and the consequential impingement of intragranular dislocations on the bicrystal boundary and their decomposition and motion along the boundary are thought to play an important role in the observed coupled motion of these tilt boundaries.  相似文献   

13.
M. A. Tschopp 《哲学杂志》2013,93(25):3871-3892
Atomistic simulations were employed to investigate the structure and energy of asymmetric tilt grain boundaries in Cu and Al. In this work, we examine the Σ5 and Σ13 systems with a boundary plane rotated about the ? 100 ? misorientation axis, and the Σ9 and Σ11 systems rotated about the ? 110 ? misorientation axis. Asymmetric tilt grain boundary energies are calculated as a function of inclination angle and compared with an energy relationship based on faceting into the two symmetric tilt grain boundaries in each system. We find that asymmetric tilt boundaries with low index normals do not necessarily have lower energies than boundaries with similar inclination angles, contrary to previous studies. Further analysis of grain boundary structures provides insight into the asymmetric tilt grain boundary energy. The Σ5 and Σ13 systems in the ? 100 ? system agree with the aforementioned energy relationship; structures confirm that these asymmetric boundaries facet into the symmetric tilt boundaries. The Σ9 and Σ11 systems in the ? 110 ? system deviate from the idealized energy relationship. As the boundary inclination angle increases towards the Σ9 (221) and Σ11 (332) symmetric tilt boundaries, the minimum energy asymmetric boundary structures contain low index {111} and {110} planes bounding the interface region.  相似文献   

14.
赵雪川  刘小明  高原  庄茁 《物理学报》2010,59(9):6362-6368
本文采用分子动力学方法研究了在剪切载荷作用下,Cu(100)扭转晶界对Cu柱屈服强度的影响.模拟结果发现,在加载过程中,低角度扭转晶界形成的位错网发生位错形核与扩展,位错之间的塞积作用提高了Cu柱的屈服强度;对于高角度扭转晶界,晶界发生滑动降低了Cu柱的屈服强度.同时发现,随着扭转角度的增加,Cu柱的屈服强度先增大,当扭转角度大于临界角度时,Cu柱的屈服应力逐渐减小.这表明剪切载荷作用下,两种不同的机理主导Cu柱的屈服,对于小于临界角度的扭转晶界,Cu柱的屈服由晶界位错形核和扩展机理主导,对于大于临界角度 关键词: 扭转晶界 分子动力学 位错形核 晶界滑移  相似文献   

15.
D. Catoor 《哲学杂志》2013,93(16):2154-2185
In polycrystalline materials that fail by transgranular cleavage, it is known that crystallographic misorientation of preferred fracture planes across grain boundaries can provide crack growth resistance; despite this, the micromechanisms associated with crack transmission across grain boundaries and their role in determining the overall fracture resistance are not well understood. Recent studies on diverse structural materials such as steels, aluminum alloys and intermetallics have shown a correlation between fracture resistance and the twist component of grain misorientation. However, the lack of control over the degree and type of misorientation in experimental studies, combined with a dearth of analytical and computational investigations that fully account for the three-dimensional nature of the problem, have precluded a systematic analysis of this phenomenon. In this study, this phenomenon was investigated through in situ crack propagation experiments across grain boundaries of controlled twist misorientation in zinc bicrystals. Extrinsic toughening mechanisms that activate upon crack stagnation at the grain boundary deter further crack propagation. The mechanical response and crack growth behavior were observed to be dependent on the twist angle, and several accommodation mechanisms such as twinning, strain localization and slip band blocking contribute to fracture resistance by competing with crack propagation. Three-dimensional finite element analyses incorporating crystal plasticity were performed on a stagnant crack at the grain boundary that provide insight into crack-tip stress and strain fields in the second grain. These analyses qualitatively capture the overall trends in mechanical response as well as strain localization around stagnant crack-tips.  相似文献   

16.
Strain induced grain boundary premelting in bulk copper bicrystals   总被引:1,自引:0,他引:1  
In bulk bicrystals strain induced grain boundary premelting (SIGBPM) occurs when heavy screw dislocation pileup can be held up to a certain high temperature, approximately 0.6T M, where T M is the melting point of bulk material in Kelvin. SIGBPM occurs at grain boundaries to which new twist component is added due to the rotation of both component crystals toward opposite direction about the axis perpendicular to the grain boundary plane. At the original grain boundary, grain boundary sliding takes place due to this relative rotation. In f.c.c. metals with relatively low stacking fault energies such as copper, nickel, brass(30Zn) and silver, dislocations dissociate into partials. Therefore high density tangled dislocations introduced during plastic deformation hardly loose. If these dislocations can be held to high temperatures, SIGBPM is promoted. Formation of static or dynamic recrystallized grains suppresses SIGBPM itself and the propagation of grain boundary cracks formed by SIGBPM.  相似文献   

17.
Internal friction measurements were performed on various ?111? tilt and twist grain boundaries in high-purity Al bicrystals. The temperature dependence of the grain boundary internal friction peak was determined, and the activation parameters of grain boundary relaxation were obtained. These parameters were found to change in a wide range depending on boundary geometry. The activation enthalpy of boundary relaxation and the pre-exponential factor of the relaxation time are related according to the compensation effect. The results are discussed in terms of the model of correlated relaxations. Bicrystals with vicinal Σ3 boundaries were observed to behave like single crystals, i.e. an internal friction peak did not appear. This evidences that both coherent and incoherent (60° ?111? tilt) twins possess a high mechanical resistance.  相似文献   

18.
Maya K. Kini 《哲学杂志》2018,98(20):1865-1883
Properties of grain boundaries such as grain boundary energy, mobility and diffusion are reported to depend strongly on their crystallography. While studies on ceramic bicrystals with low Σ misorientations have shown highly ordered structures and low energies, studies on dense polycrystalline ceramics often show the significance of grain boundary planes. In the present study, grain boundary plane distributions were studied for yttria-stabilised cubic zirconia with varying grain sizes using Electron Back Scattered Diffraction technique combined with a stereological approach. Despite nearly isotropic grain boundary plane distributions, a highly anisotropic grain boundary character distribution is observed for specific misorientations. Certain low-energy symmetric tilts such as Σ3 and Σ11 are found to occur with high frequencies across the grain size range studied, leading to an inverse correlation between GB energy and frequency of occurrence, consistent with other ceramics studied in literature.  相似文献   

19.
The grain boundary diffusion in a binary system which exhibits a grain boundary phase transition is considered in the framework of Fisher's model. The kinetic law of the growth of the grain boundary phase and the distribution of the diffusant near the grain boundary are calculated. The method of determining of the concentration dependence of the grain boundary diffusion coefficient from the experimentally measured penetration profiles of the diffusant along the grain boundaries is suggested. The experimental results on Zn diffusion in Fe(Si) bicrystals, Ni diffusion in Cu bicrystals and grain boundary grooving in Al in the presence of liquid In are discussed in light of the suggested model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号