首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
By using a baculovirus expression system, the two isoforms of the rat D2 dopamine receptor were expressed at densities ranging up to 15 pmol/mg of protein. D2L and D2S dopamine receptors expressed in aline of Spodoptera frugiperda (Sf9) insect cells Sf9cells, displayed high affinity for the antagonists spiroperidol and (+)-butaclamol and the agonist N-propylnorapomorphine. Antisera raised against the D2 receptor immunoprecipitated binding sites for a radiolabeled D2 antagonist from solubilized extracts of infected Sf9cells. In immunoblots of Sf9cells infected with recombinant D2 baculovirus, these antisera recognized a major species of protein of approximately 46 kDa. Photoaffinity-labeling of infected Sf9cells using N-(p-azido-m-[125I]iodophenethyl)spiperone also identified a protein of this size, suggesting that D2 receptors expressed in Sf9cells are largely unglycosylated. In cells expressing receptors at a density greater than 1 pmol/mg, GTP-sensitive, high-affinity binding of agonists was not detected in studies of the inhibition of the binding of a radiolabeled D2 antagonist. When expression levels were under 1 pmol/mg, the binding of agonists was sensitive to the addition of guanine nucleotides, indicating that D2 receptors were coupled to endogenous G proteins. Endogenous G proteins enable both isoforms of D2 receptors to couple to the inhibition of adenylyl cyclase activity. The high-affinity state of the D2 receptor was directly measured using a radiolabeled agonist. Although the density of receptors increased with longer times after infection, the density of high-affinity sites reached a maximum of approximately 40 fmol/mg 30 to 36 hr after infection. Coexpression of D2 receptors and G protein subunits in Sf9cells dramatically increased the density of high-affinity sites, whereas the total density of receptors was unchanged, confirming that D2 receptors in Sf9 cells can exist in the high-affinity-coupled state, but that appropriate G proteins are expressed at relatively low levels. The density of D2S receptors converted to a coupled, agonist-preferring state when coexpressed with G proteins subunits (alpha i1, beta 1 and gamma 2) was 5 times greater than that of D2L receptors expressed under the same conditions, consistent with the hypothesis that D2 dopamine receptor isoforms differentially couple to alpha i1.  相似文献   

2.
The beta and gamma subunits of heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) form tightly associated complexes. To examine functional differences among the large number of possible combinations of unique beta and gamma subunits, we have synthesized and characterized beta gamma complexes containing gamma 5 and gamma 7, two widely distributed gamma subunits. When either gamma 5 or gamma 7 is expressed concurrently with beta 1 or beta 2 subunits in a baculovirus/Sf9 cell system, all four subunit complexes support pertussis toxin-catalyzed ADP-ribosylation of rGi alpha 1 (where "r" indicates recombinant), indicating formation of functional complexes. Each of the complexes was purified by subunit exchange chromatography, using the G203A mutant of rGi alpha 1 as the immobilized ligand. The purified preparations were compared with other recombinant beta gamma subunits, including beta 1 gamma 1 and beta 1 gamma 2, for their ability to modulate type I and II adenylyl cyclase activities; stimulate phosphoinositide-specific phospholipase C beta; support pertussis toxin-catalyzed ADP-ribosylation of rGi alpha 1 and Go alpha; and inhibit steady-state GTP hydrolysis catalyzed by Gs alpha, Go alpha, and myristoylated rGi alpha 2. The results emphasize the unique properties of beta 1 gamma 1. The properties of the complexes containing gamma 5 or gamma 7 were similar to each other and to those of beta 1 gamma 2.  相似文献   

3.
Long-term (48-h) forskolin treatment of rat astroglial cells led to a slight decrease (30-40%) in the response to isoproterenol, vasoactive-intestinal peptide, guanyl 5'-(beta gamma-imido)diphosphate, guanosine 5'-O-(3-thiotriphosphate) [GTP(S)], and AIF4- in crude membrane fractions. In contrast, the acute stimulatory effect of forskolin was increased by 1.25-1.5-fold. These two opposite effects of forskolin were mediated by a cyclic AMP-dependent mechanism. No changes in Gs alpha, Gi alpha, or G beta protein levels could be determined by immunoblotting using specific antisera. No significant differences were observed in the ability of G proteins extracted from control and forskolin-treated cells to reconstitute a full adenylyl cyclase activity in membranes from S49 cyc- cells, lacking Gs alpha protein. Gs alpha proteins were detected in two pools of membranes, one in the heavy sucrose fractions and the other in light sucrose fractions. Forskolin treatment of the cells shifted Gs alpha protein toward the light-density membranes. We did not find any significant change in the distribution of adenylyl cyclase. In contrast to the decreased stimulation of adenylyl cyclase activity by agonists acting via Gs alpha, observed in the crude membrane fraction, the responses of adenylyl cyclase to forskolin as well as to GTP(S) were increased in the purified plasma membrane fractions. These results may indicate that sensitization of the catalyst appears to be the dominant component in the astroglial cell response to long-term treatment by forskolin.  相似文献   

4.
G proteins are heterotrimeric GTPases that play a key role in signal transduction. The alpha subunit of Gs bound to GTP is capable of activating adenylyl cyclase. The amino acid sequences derived from two X. laevis cDNA clones that apparently code for Gs alpha subunits are 92% identical to those found in the short form of human Gs alpha. Despite this high homology, the X. laevis Gs alpha clones expressed in vitro, yielded a protein that are not able to activate the adenylyl cyclase present in S49 cyc- membranes in contrast with human Gs alpha similarly expressed. This finding suggested that the few amino acid substitutions found in the amphibian subunit are important in defining the functionality of the human Gs alpha. The construction of chimeras composed of different fractions of the cDNAs of the two species was adopted as an approach in determining the regions of the molecule important in its functionality in this assay. Four pairs of chimeras were constructed using reciprocal combinations of the cDNAs coding for human and Xenopus Gs alpha. These eight constructs were expressed in vitro and equivalent amounts of the resulting proteins were assayed in the activation of adenylyl cyclase with GTP gamma and isoproterenol. The results obtained here clearly indicate that the G alpha sequence that extends from amino acid 70 to 140, is important for the functionality of human Gs alpha in activating adenylyl cyclase.  相似文献   

5.
We have demonstrated previously that D1 dopamine receptors are coupled to both Gs alpha and Go alpha. We examine here the coupling between human D5 dopamine receptors and G proteins in transfected rat pituitary GH4C1 cells. Similar to D1 receptors, cholera toxin treatment of cells reduced, but did not abolish, D5 agonist high-affinity binding sites, indicating D5 receptors couple to both Gs alpha and cholera toxin-insensitive G proteins. The interaction between D5 receptors and Gs alpha was confirmed by immunoprecipitation studies and by the ability of D5 receptors to stimulate adenylyl cyclase. Unlike D1 receptors, D5 receptors did not display any pertussis toxin-sensitive G-protein coupling to Go alpha or Gi alpha. D5 receptors were also not coupled to Gq alpha and were unable to mediate phosphatidylinositol metabolism. Instead, D5 sites appeared to be coupled to an AIF(-)4-sensitive, N-ethylmaleimide-resistant G protein. Anti-Gz alpha caused immunoprecipitation of 24.2 +/- 5.2% of G protein-associated D5 receptors, indicating coupling between D5 and Gz alpha. The coupling to Gz alpha was specific for D5 receptors, because similar associations were not detected between D1 receptors and Gz alpha.  相似文献   

6.
Ligands which display inverse agonism at G protein-coupled receptors do so by decreasing the intrinsic ability of a receptor to active the cellular G protein population in the absence of an agonist ligand. Expression of the murine delta opioid receptor in Rat-1 fibroblasts resulted in the inverse agonist ICI174864 being able to cause inhibition of basal high affinity GTPase activity and of the binding of [35S]GTP gamma S in membranes of a clone (D2) of these cells which expresses high levels of the receptor. These effects were blocked by co-addition of the neutral antagonist TIPP[psi], demonstrating a requirement for the delta opioid receptor, and by pertussis toxin pretreatment of the cells, showing them to be produced via a Gi-like G protein. The inverse agonist properties of ICI174864 could also be demonstrated in whole cells. Stimulation of forskolin-amplified adenylyl cyclase activity was produced by ICI174864 following [3H]adenine prelabelling of the cells. Constitutively activated mutants of receptors should provide a convenient means to detect inverse agonists. Incubation of cells either transiently or stably transfected with a constitutively activated mutant of the human beta 2-adrenoceptor with the beta 2-inverse agonists betaxolol or sotalol, which are both able to inhibit CAM beta 2-adrenoceptor-mediated basal adenylyl cyclase activity, resulted in a strong upregulation of levels of the receptor. In the stable cells lines this effect was prevented by co-incubation with neutral antagonists but could not be reproduced by an adenylyl cyclase P-site ligand which also inhibited basal adenylyl cyclase levels.  相似文献   

7.
The effect of dexamethasone administration in vivo on the steady-state levels of G-protein subunits in liver of neonatal rabbits was investigated using specific antibodies to each subunit as well as bacterial toxin-mediated ADP-ribosylation assays. Parallel measurements were also made of the activity of adenylyl cyclase, as influenced by a variety of activators. Dexamethasone administration modulated the levels of G-protein subunits in liver in an age-dependent and subunit-specific manner but not in 24-h-old newborns. The inductive effect of dexamethasone was observed in animals older than 24 h, the greatest effect being on 2- to 3-day-old neonates. In 48-h-old animals the alpha-subunits Gs alpha-1, Gs alpha-2, Gi alpha and the beta-subunit G beta increased 2.0-, 2.1-, 4.3- and 2.8-fold, respectively, compared to the control. The increases were much less for older animals. Dexamethasone treatment also modulated effector-mediated stimulation of adenylyl cyclase activity in vitro and mimicked its effects on G-protein levels; the greatest increase (approximately 2-fold) in the activation of adenylyl cyclase occurred in membranes isolated from 2- to 3-day-old animals. In older animals there was either no effect of dexamethasone or a decrease in activity. The degree of change in enzyme activity paralleled the change in the amount of Gs alpha rather than of Gi alpha or G beta. These results suggest development-dependent regulation of hepatic G-proteins by glucocorticoids.  相似文献   

8.
The G protein beta5 subunit differs substantially in amino acid sequence from the other known beta subunits suggesting that beta gamma dimers containing this protein may play specialized roles in cell signaling. To examine the functional properties of the beta5 subunit, recombinant beta5 gamma2 dimers were purified from baculovirus-infected Sf9 insect cells using a strategy based on two affinity tags (hexahistidine and FLAG) engineered into the N terminus of the gamma2 subunit (gamma2HF). The function of the pure beta5 gamma2HF dimers was examined in three assays: activation of pure phospholipase C-beta in lipid vesicles; activation of recombinant, type II adenylyl cyclase expressed in Sf9 cell membranes; and coupling of alpha subunits to the endothelin B (ETB) and M1 muscarinic receptors. In each case, the efficacy of the beta5 gamma2HF dimer was compared with that of the beta1 gamma2HF dimer, which has demonstrated activity in these assays. The beta5 gamma2HF dimer activated phospholipase C-beta with a potency and efficacy similar to that of beta1 gamma2 or beta1 gamma2HF; however, it was markedly less effective than the beta1 gamma2HF or beta1 gamma2 dimer in its ability to activate type II adenylyl cyclase (EC50 of approximately 700 nM versus 25 nM). Both the beta5 gamma2HF and the beta1 gamma2HF dimers supported coupling of M1 muscarinic receptors to the Gq alpha subunit. The ETB receptor coupled effectively to both the Gi and Gq alpha subunits in the presence of the beta1 gamma2HF dimer. In contrast, the beta5 gamma2HF dimer only supported coupling of the Gq alpha subunits to the ETB receptor and did not support coupling of the Gi alpha subunit. These results suggest that the beta5 gamma2HF dimer binds selectively to Gq alpha subunits and does not activate the same set of effectors as dimers containing the beta1 subunit. Overall, the data support a specialized role for the beta5 subunit in cell signaling.  相似文献   

9.
Long-term stimulation of the beta 2-adrenergic receptor (beta 2AR) leads to an internalization and degradation of the receptor. This down-regulation of the beta 2AR number contributes to the desensitization of the adenylyl cyclase activity induced by chronic exposure to agonists. It was proposed that two tyrosine residues (Tyr-350 and Tyr-354) located in the cytoplasmic tail of the beta 2AR play a crucial role in agonist-induced down-regulation. In addition to perturbation of the down-regulation, the substitution of these tyrosines for alanines also led to a functional uncoupling of the receptor from Gs [Valiquette et al. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 5089-5093]. To further characterize the relative contribution of Tyr-350 and Tyr-354 to the receptor interaction with Gs and agonist-promoted down-regulation, both tyrosines were individually replaced by alanines and mutant receptors expressed in CHW cells. We show here that mutation of Tyr-350 but not that of Tyr-354 significantly decreased the ability of the beta 2AR to be functionally coupled to Gs and thereby to stimulate the adenylyl cyclase. Moreover, in contrast to the double tyrosine mutation, neither of the single-point mutations affected the agonist-induced down-regulation pattern. These data suggest that the presence of either Tyr-350 or Tyr-354 is sufficient to maintain normal agonist-induced down-regulation whereas the integrity of Tyr-350 is required for an appropriate coupling to Gs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In end-stage heart failure, cardiac beta-adrenoceptors are decreased and cardiac Gi protein is increased. We assessed beta-adrenoceptors, G proteins, and effects of several beta-adrenoceptor agonists, histamine, and 5-HT on adenylyl cyclase activity in right and left atria and left ventricles and on left ventricular contractility in six potential heart transplant donors (nonfailing hearts; NFHs) and in nine patients with end-stage dilated cardiomyopathy (DCM) and 11 patients with end-stage ischemic cardiomyopathy (ICM) to establish whether the functional responsiveness of all cardiac Gs-coupled receptors is reduced. Beta-adrenoceptors were reduced in all three tissues; in DCM, beta1-adrenoceptors were more markedly downregulated; in ICM, both beta1- and beta2-adrenoceptors were diminished. In all three tissues, isoprenaline-, terbutaline-, histamine- and 5-HT-induced adenylyl cyclase activation was reduced similarly in DCM and ICM. Moreover, in DCM and ICM, guanosine triphosphate (GTP)- (involving Gs and Gi) activated adenylyl cyclase was significantly diminished, whereas NaF-activated (involving only Gs) and Mn2+-activated (acting at the catalytic unit of the enzyme) adenylyl cyclase was unaltered. Left ventricular positive inotropic responses to beta1- (noradrenaline, dopamine, and dobutamine), beta2- (terbutaline), and beta1- and beta2-adrenoceptors (isoprenaline, adrenaline, and epinine), as well as H2-receptor (histamine) stimulation were significantly reduced. The extent of reduction was not different for each agonist in ICM and DCM. We conclude that in DCM and ICM, functional responsiveness of all cardiac Gs-coupled receptors is similarly reduced.  相似文献   

11.
In several cell systems histamine has been shown to stimulate both adenylyl cyclase and phospholipase C through activation of a G protein-coupled H2 receptor. To analyze the bifurcating signal emanating from the activated H2 receptor and to identify the G proteins involved, H1 and H2 histamine receptors were functionally expressed in baculovirus-infected insect cells. Histamine challenge lead to concentration-dependent cAMP formation and Ca2+ mobilization in Sf9 cells infected with a virus encoding the H2 receptor, whereas H1 receptor stimulation only resulted in pronounced phospholipase C activation. To analyze the G protein coupling pattern of histamine receptors, activated G proteins were labeled with [alpha-32P]GTP azidoanilide and identified by selective immunoprecipitation. In insect cell membranes expressing H1 histamine receptors, histamine led to incorporation of the label into alpha q-like proteins, whereas activation of the H2 receptor resulted in labeling of alpha q- and alpha s-like G protein alpha-subunits. In COS cells transfected with H2 receptor complementary DNA, histamine caused concentration-dependent accumulation of cAMP and inositol phosphates; the latter effect was insensitive to pertussis toxin treatment. Histamine stimulation led to a pronounced increase in inositol phosphate production when complementary DNAs coding for alpha q, alpha 11, alpha 14, or alpha 15 G protein alpha-subunits were cotransfected. This increase was specific for Gq family members, as overexpression of alpha 12 or alpha s did not enhance histamine-stimulated phospholipase C activation. In membranes of guinea pig heart, addition of [alpha-32P]GTP azidoanilide resulted in labeling of alpha q and alpha 11 via the activated H1 and also via H2 receptors. These data demonstrate that dual signaling of the activated H2 histamine receptor is mediated by coupling of the receptor to Gs and Gq family members.  相似文献   

12.
We report a strategy of tumor growth inhibition based on the expression of a foreign protein with both potential anti-proliferative and immunogenic properties. To validate our approach, we used 2 ras-mutated murine carcinoma cell lines (carB and C57/PDV) transfected with the gene encoding a fusion protein containing the human beta2-adrenergic receptor and the alpha subunit of the Gs protein (beta2Gs). We previously showed that the sustained activation of the beta2Gs fusion protein expressed in carB cells (carB beta2Gs cells) induced a cAMP-dependent inhibition of cell growth in vitro. Here, we observed inhibition of tumor growth after s.c. inoculation of 2 carB beta2Gs clones (10C2 and 20F4) in syngeneic ICFW mice. We thus selected 3 C57/PDV beta2Gs clones (2D3, 5F3 and 1G1) in which activation of the fusion protein was not efficiently coupled to the cAMP-PKA signaling pathway. Contrasting with carB beta2Gs clones, activation of the fusion protein in these C57/PDV beta2Gs clones did not have any anti-proliferative effect in vitro. Therefore, they were good candidates to assess the immunogenic property of the fusion protein. Accordingly, none of the C57/PDV beta2Gs clones formed tumors in immunocompetent syngeneic C57BL/6 mice, while they were still tumorigenic in nude mice. Most interestingly, all of the beta2Gs clones that did not form tumors, from both cell lines, provided protection against respective wild-type tumor development. Our results show that expression of the beta2Gs fusion protein in cancer cells elicits inhibition of cell proliferation and/or immune rejection of both beta2Gs-modified and wild-type tumor cells.  相似文献   

13.
14.
The ability of the tubulin dimer to interact with and to modulate the Gi function inhibiting adenylyl cyclase was examined in cerebral cortex membranes from 2-month-old and 24-month-old rats. The hydrolysis-resistant GTP analogue 5'-guanylylimidodiphosphate (GppNHp)-dependent inhibition of adenylyl cyclase was significantly decreased in cerebral cortex membranes from 24-month-old rats. Tubulin, prepared from rat brains by polymerization with GppNHp, caused inhibition of adenylyl cyclase (approximately 28%) in 2-month-old rats. Tubulin-GppNHp-dependent inhibition of adenylyl cyclase in 24-month-old rats was significantly attenuated (approximately 15%). In 2-month-old rats, when tubulin, polymerized with the hydrolysis-resistant photoaffinity GTP analogue [32P]P3(4-azidoanilido)-P1-5'-GTP ([32P]AAGTP), was incubated with cerebral cortex membranes, AAGTP was transferred from tubulin to Gi alpha. Transfer of AAGTP from tubulin to Gi alpha was reduced in 24-month-old rats. Furthermore, photoaffinity labeling of [32P]AAGTP to Gi alpha in cortex membranes was significantly decreased in 24-month-old rats. No differences were observed in the amounts of Gs alpha, Gi alpha, or G beta subunits and tubulin, estimated by immunoblotting, in cortex membranes from 2-month-old and 24-month-old rats. These results suggest that the ability of tubulin to interact with Gi and thereby modulate the inhibitory regulation of adenylyl cyclase is reduced in the cerebral cortex of 24-month-old rats.  相似文献   

15.
Hormonal signals activate trimeric G proteins by substituting GTP for GDP bound to the G protein alpha subunit (Galpha), thereby generating two potential signaling molecules, Galpha-GTP and free Gbetagamma. The usefulness of dominant negative mutations for investigating Ras and other monomeric G proteins inspired us to create a functionally analogous dominant negative Galpha mutation. Here we describe a mutant alpha subunit designed to inhibit receptor-mediated hormonal activation of Gs, the stimulatory regulator of adenylyl cyclase. To construct this mutant, we introduced into the alpha subunit (alphas) of Gs three separate mutations chosen because they impair alphas function in complementary ways: the A366S mutant reduces affinity of alphas for binding GDP, whereas the G226A and E268A mutations impair the protein's ability to bind GTP and to assume an active conformation. The triple mutant robustly inhibits (by up to 80%) Gs-dependent hormonal stimulation of adenylyl cyclase in cultured cells. Inhibition is selective in that it does not affect cellular responses to expression of a constitutively active alphas mutant (alphas-R201C) or to agonists for receptors that activate Gq or Gi. This alphas triple mutant and cognate Galpha mutants should provide specific tools for dissection of G protein-mediated signals in cultured cells and transgenic animals.  相似文献   

16.
The barrier function of cultured, macrovascular endothelial cells derived from bovine aorta was analyzed using confluent monolayers of cells and measuring the exchange of fluorescein dextrans of different molecular masses. The effects of beta-adrenoceptor agonists with different selectivity for beta 1- and beta 2-adrenoceptors (AR) were investigated. Formoterol, a novel high-affinity agonist for beta 2-AR recently introduced in the treatment of bronchial asthma, showed a significant reduction of cell permeability with subnanomolar concentrations, whereas the catecholamines (-)-isoproterenol and (-)-norepinephrine only showed significant effects with micromolar concentrations. In order to elucidate if this difference in potential to regulate cell permeability is related to appropriate changes in the selectivity and affinity of the agonists for beta 2 AR, we investigated the beta AR-coupled adenylate cyclase (AC) in membranes from endothelial cells and compared AC stimulation with the binding of agonists to the receptors using [125I](-)-iodopindolol as radioligand. beta-Adrenoceptors revealed to be closely coupled to AC as assessed by a similar magnitude of effects by receptor agonists in comparison to GTP analogues and direct stimulants of AC activity. AC activity was increased by formoterol in parallel to its receptor occupancy of beta 2AR with nanomolar concentrations which were 50-fold higher than those used for the regulation of cell permeability indicating the existence of spare receptors. In contrast to formoterol, the catecholamines (-)-isoproterenol and (-)-norepinephrine stimulated AC activity through both beta 1AR and beta 2AR. From the overproportional high contribution of beta 1AR to AC stimulation (42%) in comparison to its low fraction (13%) in receptor binding we calculated that beta 1AR is 3-4-fold more effectively coupled to AC than beta 2 AR.  相似文献   

17.
We have studied the in vitro effect of sodium saccharin (NaSacch) on the rat adipocyte adenylyl cyclase complex. NaSacch (2.5-50 mM) inhibited significantly in a dose-dependent manner basal and isoproterenol-stimulated cAMP accumulation on isolated rat adipocytes. Similarly, NaSacch (2.5-50 mM) inhibited forskolin-stimulated adenylyl cyclase activity measured in the presence of Mg(2+)-ATP on adipocyte, astrocyte and thyrocyte membrane fractions. In contrast, NaSacch did not inhibit but slightly increased the forskolin-stimulated adenylyl cyclase activity measured in the presence of Mn(2+)-ATP and GDP beta S, a stable GDP analogue. The effect of NaSacch was not mediated through either the A1-adenosine receptor (A1R) or the alpha 2-adrenergic receptor (alpha 2AR). The inhibitory effect of NaSacch was additive to that of A1R agonist and was not blocked by the addition of the alpha 2AR antagonist RX 821002. Pretreatment of adipocytes with pertussis toxin slightly attenuated but did not abolish the inhibitory effect of NaSacch on forskolin-stimulated adenylyl cyclase activity on membrane fractions. These data suggest that the inhibitory effect of NaSacch on forskolin stimulated-adenylyl cyclase in adipocytes does not imply only Gi protein but also other direct or indirect inhibitory pathway(s) which remain to be determined.  相似文献   

18.
We previously showed that substitution of a glycine residue for the palmitoylated cysteine 341 of the human beta2-adrenergic receptor (Gly341beta2AR), increases the basal level of the receptor phosphorylation and reduces its ability to functionally interact with Gs. In the present study, we show that additional mutation of serines 345 and 346 (Ala345,346Gly341beta2AR) restored normal phosphorylation and receptor-Gs coupling, thus suggesting that the increased phosphorylation of this site, rather than the lack of palmitoylation per se, is responsible for the poor coupling of the unpalmitoylated receptor. This is supported by the observation that chemical depalmitoylation of purified beta2AR did not affect the ability of the receptor to stimulate adenylyl cyclase in reconstitution assays. Furthermore, mutation of Ser345,346 in a wild type receptor background (Ala345,346beta2AR) significantly decreased the rate of agonist-promoted desensitization of the receptor-stimulated adenylyl cyclase activity, supporting a role for this phosphorylation site in regulating the functional coupling of the receptor. Since serines 345 and 346 are located in a putative cyclic AMP-dependent protein kinase (PKA) phosphorylation site immediately downstream of the palmitoylated cysteine 341, the hypothesis that the accessibility of this site may be regulated by the receptor palmitoylation state was further assessed in vitro. In membrane phosphorylation assays, Gly341beta2AR was found to be a better substrate for PKA than the wild type receptor, thus supporting the notion that palmitoylation restrains access of the phosphorylation site to the enzyme. Taken together, the data demonstrate that palmitoylation of cysteine 341 controls the phosphorylation state of the PKA site located in the carboxyl tail of the beta2AR and by doing so modulates the responsiveness of the receptor.  相似文献   

19.
The coupling of receptors to heterotrimeric G proteins is determined by interactions between the receptor and the G protein alpha subunits and by the composition of the betagamma dimers. To determine the role of the gamma subunit prenyl modification in this interaction, the CaaX motifs in the gamma1 and gamma2 subunits were altered to direct modification with different prenyl groups, recombinant betagamma dimers expressed in the baculovirus/Sf9 insect cell system, and the dimers purified. The activity of the betagamma dimers was compared in two assays: formation of the high affinity agonist binding conformation of the A1 adenosine receptor and receptor-catalyzed exchange of GDP for GTP on the alpha subunit. The beta1gamma1 dimer (modified with farnesyl) was significantly less effective than beta1gamma2 (modified with geranylgeranyl) in either assay. The beta1gamma1-S74L dimer (modified with geranylgeranyl) was nearly as effective as beta1gamma2 in either assay. The beta1gamma2-L71S dimer (modified with farnesyl) was significantly less active than beta1gamma2. Using 125I-labeled betagamma subunits, it was determined that native and altered betagamma dimers reconstituted equally well into Sf9 membranes containing A1 adenosine receptors. These data suggest that the prenyl group on the gamma subunit is an important determinant of the interaction between receptors and G protein gamma subunits.  相似文献   

20.
OBJECTIVE: The aim of the present study was to investigate the functional regulation of the myocardial postreceptor adenylyl cyclase (AC) system in compensated left ventricular hypertrophy (LVH) and the effect of long-term angiotensin converting enzyme (ACE) inhibition. METHODS: Pressure overload LVH was induced in rats by supravalvular aortic banding for 12 weeks. At 12 weeks left ventricular function and inner diameters were analyzed by echocardiography of anesthetized animals, and responsiveness to forskolin (systolic developed pressure) was determined in isolated perfused hearts. Functional activities of AC and the stimulatory G protein Gs were measured as well as mRNA expression (quantitative slot blot analyses) of AC type V, isoforms of Gs alpha and Gi alpha 2. G protein alpha-subunits were also quantified by immunoblotting. Rats were treated with ramipril (Ram, 10 mg/kg per day p.o.) during weeks 7 to 12 to induce regression of LVH or with vehicle (Veh, tap water). RESULTS: Pressure overload induced severe LVH (3.2 +/- 0.09 g/kg in Veh vs. 1.8 +/- 0.03 in sham; P < 0.05) which was significantly reduced by ramipril (2.7 +/- 0.09; P < 0.05 vs. Veh). In-vivo left ventricular function and diameters were unchanged in LVH. In contrast, in hearts with LVH, responsiveness of left ventricles to forskolin was attenuated and basal, GTP gamma S and forskolin as well as manganese chloride-stimulated adenylyl cyclase activity was significantly downregulated by approximately 40% (basal 20.8 +/- 1.9 pmol cAMP/mg per min vs. 34.0 +/- 2.2 in sham; P < 0.01). However, no significant changes of AC type V mRNA were found in hypertrophied left ventricles. Functional activity of the stimulatory G protein Gs was reduced in LVH (48 +/- 7 pmol cAMP/mg per min in Veh vs. 68 +/- 3 in sham), whereas mRNA expression of long and short Gs alpha-isoforms was not altered and that of Gi alpha 2 was only slightly increased in ramipril-treated animals. Western analysis showed no significant differences of Gs alpha or Gi alpha 2 subunits. Long-term blockade of the renin-angiotensin system had no effect on the activity of the adenylyl cyclase system. CONCLUSIONS: Functional desensitization of adenylyl cyclase and stimulatory G protein occurred in rat adaptive LVH prior to the onset of severe left ventricular dysfunction which was not restored by ACE-inhibitor treatment. The desensitization seems not to be mediated by significant changes of mRNA expression of AC type V or abundance of regulatory G proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号