首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a review of the current and future applications of microelectromechanical systems (MEMS) in the industrial sector. A historical perspective of the origin and development of MEMS is presented, as well as the traditional and innovative fabrication techniques. The process flow of computer-aided design and simulation is also discussed. After that, several of the most important applications of microsystems in the manufacturing and production sectors are enumerated and described. Two case examples are discussed in depth: gyroscopes for the measurement of angular movement, where the basic laws are provided, and a thorough review of existing devices is presented; and particle production devices for the generation of micrometer-sized droplets, where the two most common techniques are compared, along with the challenges that remain open. Finally, some conclusions and perspectives for the future are presented and discussed.  相似文献   

2.
Superconducting coils have been utilized in a broad range of applications which continues to expand. Initially, they were used for small physics experiments in the laboratory. More recent applications involve superconducting coils on a scale that would have been unrealistic only a few years ago. This paper is concerned with some of these applications. After a brief review of the main characteristics of superconductors and superconducting windings in general, specific applications are discussed. These include high-energy physics, controlled thermonuclear fusion, magnetohydrodynamic power generation, inductive energy storage, and levitation of high-speed ground vehicles. Photographs and illustrations are included to describe some of the existing systems as well as some systems which are presently conceptual in nature.  相似文献   

3.
Materials with hierarchical porosity and structures have been heavily involved in newly developed energy storage and conversion systems. Because of meticulous design and ingenious hierarchical structuration of porosities through the mimicking of natural systems, hierarchically structured porous materials can provide large surface areas for reaction, interfacial transport, or dispersion of active sites at different length scales of pores and shorten diffusion paths or reduce diffusion effect. By the incorporation of macroporosity in materials, light harvesting can be enhanced, showing the importance of macrochannels in light related systems such as photocatalysis and photovoltaics. A state‐of‐the‐art review of the applications of hierarchically structured porous materials in energy conversion and storage is presented. Their involvement in energy conversion such as in photosynthesis, photocatalytic H2 production, photocatalysis, or in dye sensitized solar cells (DSSCs) and fuel cells (FCs) is discussed. Energy storage technologies such as Li‐ions batteries, supercapacitors, hydrogen storage, and solar thermal storage developed based on hierarchically porous materials are then discussed. The links between the hierarchically porous structures and their performances in energy conversion and storage presented can promote the design of the novel structures with advanced properties.  相似文献   

4.
As one of the most electrochemical energy storage devices, lithium-ion batteries (LIBs) remain the workhorse of the energy market due to their unparalleled advantages. Remarkably, Si-based materials play a pivotal role in LIBs anodes owing to ultrahigh theoretical capacity of Si and rich natural resources. However, bulk silicon materials are difficult to meet the current commercial demand because of their low conductivity, sluggish reaction kinetics, and huge volume expansion. The construction of porous structures has been acknowledged as an effective way to solve the above issues. Herein, the delicate design of porous Si-based anode materials including synthetic strategies, the engineering of surface morphology and micro/nano-structure, and the regulation of different compositions, as well as their applications in LIBs is systematically summarized. Particularly, the fine engineering of different pore parameters for Si-based materials is on focus. Importantly, the relationship between thick electrodes and tortuosity/porosity, and the structural effect between pores and battery performance are also discussed in depth. Finally, the applications of porous Si-based anodes in full-cells and their commercial achievements are briefly described. This review is expected to provide a basic understanding and deep insight into developing porous Si-based anodes for high-energy lithium storage.  相似文献   

5.
Solid-liquid triboelectric nanogenerators (SL-TENGs) are a new technology that combines contact electrification (CE) and electrostatic induction to collect clean energy stored in natural water. Considering their unique advantages of high energy density, wide selection of materials and being suitable for large-scale promotion, they have attracted more and more attention in recent years, and numerous studies have shown their great potential in various applications. Many critical applications of SL-TENGs inevitably involve sustained and stable high electrical output. To achieve stable output performance and long cycle life in these applications, the adaptability of SL-TENGs to material selection, structural design, and working environment is necessary. Therefore, the construction of SL-TENGs matching different applications has become a critical research direction in TENGs. This review provides a historical summary of the development of SL-TENGs in the past few years and analyzes the key factors affecting their electrical output performance. The exciting achievements of different constructions of SL-TENGs for practical applications is also demonstrated such as energy harvesting, self-powered sensing, and self-powered cathodic protection. Finally, the development prospects of SL-TENGs and the significant challenges for their further development is discussed.  相似文献   

6.
Electrets are normally applied for energy conversion from mechanical vibration sources in the environment to electrical power without any friction, which induces electric device sustainability and mechanically robust. It functions for electron storage and electrostatic/triboelectric effect, whose electrical/mechanical performance dramatically benefits energy harvesters, self-powered sensors, and even intelligent/sustainable systems. To summarize the progress of electret-based electronics, this review proposes three key issues around enhanced energy harvesting toward sensors and sustainable systems. First, with the properties of long-term charge storage characteristics and the contactless mechanism for energy harvesting, the enhancement effect in electret from MEMS devices, porous microstructure devices, and multilayer electret devices are carefully assessed with the output power from various devices. Second, the multi-functional applications aspect along with the triboelectric coupling effect and artificial piezoelectric materials are discussed as future electret devices, for example, polydimethylsiloxane materials. Third, more than energy harvesting, machine learning-enabled methodology in electret electronics can be more reliable and sustainable, dramatically contributing to the living standard of the society. Electret technologies on the future development trends are finally analyzed and strengthened toward multifunctional, sustainable, and intelligent systems along with the upcoming technologies in coupling mechanism, artificial composite materials, and machine learning in data fusion.  相似文献   

7.
8.
Photocatalysis is a promising and convenient strategy to convert solar energy into chemical energy for various fields. However, photocatalysis still suffers from low solar energy conversion efficiency. Developing state of the art photocatalysts with high efficiency and low cost is a huge challenge. Transition metal nitrides (TMNs) as a class of metallic interstitial compounds have attracted significant attention in photocatalytic applications. In fact, TMNs exhibit multifunctional properties in various photocatalytic systems. This review is the first attempt that summarizes recent research on TMNs-based materials in various photocatalytic applications. Different roles of TMNs materials in photocatalytic systems including semiconductor active components, co-catalysts, inter-band excitation, and surface plasmon resonance components are systematically discussed and summarized. The fundamentals, latest progress, and emerging opportunities for further improving the performances of TMNs-based materials for photocatalysis are also discussed. Finally, some challenges facing TMNs, and perspectives on their future that are relevant for furthering research in the area of photocatalysis are also proposed.  相似文献   

9.
Architectural windows that smartly regulate indoor solar radiation by changing their optical transmittance in response to thermostimuli are developed as a promising solution toward reducing the energy consumption of buildings. Recently, energy‐efficient smart window technology has attracted increasing scientific interest, with the exploration of energy‐efficient novel materials as well as integration with practical techniques to generate various desired multifunctionalities. This review systematically summarizes emerging thermoresponsive materials for smart window applications, including hydrogels, ionic liquids, perovskites, metamaterials, and liquid crystals. These are compared with vanadium dioxide (VO2), a conventional and extensively studied material for thermochromic smart window applications. In addition, recent progress on cutting‐edge integrated techniques for smart windows is covered, including electrothermal techniques, self‐cleaning, wettability, and also integration with solar cells for bifunctional energy conservation and generation. Finally, opportunities and challenges relating to thermochromic smart windows and prospects for future development are discussed.  相似文献   

10.
Virtual reality (VR) and augmented reality (AR) are overcoming the physical limits of real-life using advances in devices and software. In particular, the recent restrictions in transportation from the coronavirus disease 2019 (COVID-19) pandemic are making people more interested in these virtual experiences. However, to minimize the differences between artificial and natural perception, more human-interactive and human-like devices are necessary. The skin is the largest organ of the human body and interacts with the environment as the site of interfacing and sensing. Recent progress in skin electronics has enabled the use of the skin as the mounting object of functional devices and the signal pathway bridging humans and computers, with opening its potential in future VR and AR applications. In this review, the current skin electronics are summarized as one of the most promising device solutions for future VR/AR devices, especially focusing on the recent materials and structures. After defining and explaining VR/AR systems and the components, the advantages of skin electronics for VR/AR applications are emphasized. Next, the detailed functionalities of skin electronic devices, including the input, output, energy devices, and integrated systems, are reviewed for future VR/AR applications.  相似文献   

11.
Nature is remarkably adept at using interfaces to build structures, encapsulate reagents, and regulate biological processes. Inspired by nature, flexible polymer‐based ribbons, termed “mesoscale polymers” (MSPs), are described to modulate interfacial interactions with liquid droplets. This produces unprecedented hybrid assemblies in the forms of flagellum‐like structures and MSP‐wrapped droplets. Successful preparation of these hybrid structures hinges on interfacial interactions and tailored MSP compositions, such as MSPs with domains possessing distinctly different affinity for fluid–fluid interfaces as well as mechanical properties. In situ measurements of MSP–droplet interactions confirm that MSPs possess a negligible bending stiffness, allowing interfacial energy to drive mesoscale assembly. By exploiting these interfacial driving forces, mesoscale polymers are demonstrated as a powerful platform that underpins the preparation of sophisticated hybrid structures in fluids.  相似文献   

12.
Ambipolar transistors represent a class of transistors where positive (holes) and negative (electrons) charge carriers both can transport concurrently within the semiconducting channel. The basic switching states of ambipolar transistors are comprised of common off‐state and separated on‐state mainly impelled by holes or electrons. During the past years, diverse materials are synthesized and utilized for implementing ambipolar charge transport and their further emerging applications comprising ambipolar memory, synaptic, logic, and light‐emitting transistors on account of their special bidirectional carrier‐transporting characteristic. Within this review, recent developments of ambipolar transistor field involving fundamental principles, interface modifications, selected semiconducting material systems, device structures, ambipolar characteristics, and promising applications are highlighted. The existed challenges and prospective for researching ambipolar transistors in electronics and optoelectronics are also discussed. It is expected that the review and outlook are well timed and instrumental for the rapid progress of academic sector of ambipolar transistors in lighting, display, memory, as well as neuromorphic computing for artificial intelligence.  相似文献   

13.
Personalizing recommendations for tourists   总被引:1,自引:0,他引:1  
Internet has significantly influenced the tourism sector providing a great variety of services and products online. However, the number of choices has increased so dramatically that is very difficult for the consumers to find what they are looking for. For this purpose, recommendation systems for tourism have attracted a lot of research energy and interest. The main characteristic of these systems is that they can personalize their recommendations to each user interacting with the system. Personalization is even more essential for tourism recommendation systems used in handheld devices where the screen is even smaller and the presentation capabilities are limited. This paper addresses these problems and provides some development steps for a tourism recommendation system by making a state of the art in personalized e-tourism services both in computers and handheld devices as well as a review of the user modeling and personalization techniques used in these systems. Furthermore, the theories used for the improvement of the personalization procedure in tourism recommendation systems; their applications and evaluation are discussed.  相似文献   

14.
Layered materials have received extensive attention for widespread applications such as energy storage and conversion, catalysis, and ion transport owing to their fast ion diffusion, exfoliative feature, superior mechanical flexibility, tunable bandgap structure, etc. The presence of large interlayer space between each layer enhances intercalation of the guest ion or molecule, which is beneficial for fast ion diffusion and charge transport along the channels. This intercalation reaction of layered compounds with guest species results in material with improved mechanical and electronic properties for efficient energy storage and conversion, catalysis, ion transport, and other applications. This review extensively discusses the intercalation of guest ionic or molecular species into layered materials used for various types of applications. It assesses the intercalation strategies, mechanism of ionic or molecular intercalation reactions, and highlights recent advancements. The electrochemical performances of several typical intercalated materials in batteries, supercapacitors, and electrocatalytic systems have been thoroughly discussed. Moreover, the challenges in the design and intercalation of layered materials, as well as prospects of future development are highlighted.  相似文献   

15.
Multiphoton lithography (MPL) is a powerful and useful structuring tool capable of generating 2D and 3D arbitrary micro- and nanometer features of various materials with high spatial resolution down to nm-scale. This technology has received tremendous interest in tissue engineering and medical device manufacturing, due to its ability to print sophisticated structures, which is difficult to achieve through traditional printing methods. Thorough consideration of two-photon photoinitiators (PIs) and photoreactive biomaterials is key to the fabrication of such complex 3D micro- and nanostructures. In the current review, different types of two-photon PIs are discussed for their use in biomedical applications. Next, an overview of biomaterials (both natural and synthetic polymers) along with their crosslinking mechanisms is provided. Finally, biomedical applications exploiting MPL are presented, including photocleaving and photopatterning strategies, biomedical devices, tissue engineering, organoids, organ-on-chip, and photodynamic therapy. This review offers a helicopter view on the use of MPL technology in the biomedical field and defines the necessary considerations toward selection or design of PIs and photoreactive biomaterials to serve a multitude of biomedical applications.  相似文献   

16.
A forecast of the practical and promising devices, circuits, and systems that can be expected in the next one to five years is presented. It is based on a survey of a group of distinguished practitioners throughout the industry. The forecasts cover the areas of lasers and electrooptics, integrated optoelectronics, electron devices, digital integrated circuits, high-frequency and microwave devices, VLSI signal and image processing systems, analog ICs and signal processing, power electronics and systems, neural systems and applications, and medical image and signal processing. A particularly optimistic outlook is seen for lasers, fiber optics, optoelectronic ICs, and optical switching and processing. Digital ICs and power electronics are also expected to make steady gains. In addition, flat panel displays will attract a fair amount of activity, with the liquid-crystal and electroluminescent types emerging as the leaders in this decade. Looking further out, advances in artificial and biological neural systems represents a natural extension to more sophisticated problem-solving in speech processing, vision and communications  相似文献   

17.
Organogels are an important class of gels, and are comparable to hydrogels owing to their properties as liquid-infused soft materials. Despite the extensive choice of liquid media and compatible networks that can provide a broader range of properties, relatively few studies are reported in this area. This review presents the applicability of organogels concerning their choice of components, unique properties, and applications. Their distinctive features compared to other gels are discussed, including multi-stimuli responses, affinity to a broad range of substances, thermal and environmental stability, electronic and ionic conductivity, and actuation. The active role of solvents is highlighted in the versatility of organogel properties. To differentiate between organogels and other gels, these are classified as gels filled with different organic liquids, including highly polar organic solvents and binary solvent systems. Most promising applications of organogels as sophisticated multifunctional materials are discussed in light of their unique features.  相似文献   

18.
An updated review of the state of the art in the development of GaAs solar cells is provided, with emphasis on AlGaAs-GaAs cells suitable for space applications. A set of theoretically derived characteristics is given for this type of solar cell. Comparison of measured performance with theory shows excellent agreement. Data on the effects of radiation damage (high-energy electrons, protons, and neutrons) is also integrated into a form useful for evaluation purposes. Techniques for fabricating (AlGa)As-GaAs solar cells in quantities large enough for practical applications are discussed and are shown to have been demonstrated. The possibility of extending these techniques to the fabrication of very thin low-weight cells for space applications is also considered. Finally, the results obtained to date in the development of GaAs solar cells for applications requiring concentrated sunlight are reviewed, for terrestrial as well as for space applications. As a milestone toward the practical application of AlGaAs-GaAs solar cells in space systems, a brief account is provided on the development status of small experimental AlGaAs-GaAs solar-cell panels for specific space flights.  相似文献   

19.
Possible directions for analog MOS IC research and development are discussed. Although many references to recent work are provided, no comprehensive review of the state of the art is attempted. Rather, the emphasis is selectively on certain current trends, as well as ideas that, in the opinion of the author, show promise for the future. A number of applications are considered, including artificial intelligence.  相似文献   

20.
Advanced forms of hydrogels have many inherently desirable properties and can be designed with different structures and functions. In particular, bioresponsive multifunctional hydrogels can carry out sophisticated biological functions. These include in situ single-cell approaches, capturing, analysis, and release of living cells, biomimetics of cell, tissue, and tumor-specific niches. They can allow in vivo cell manipulation and act as novel drug delivery systems, allowing diagnostic, therapeutic, vaccination, and immunotherapy methods. In the present review of multitasking hydrogels, new approaches and devices classified into point-of-care testing (POCT), microarrays, single-cell/rare cell approaches, artificial membranes, biomimetic modeling systems, nanodoctors, and microneedle patches are summarized. The potentials and application of each format are critically discussed, and some limitations are highlighted. Finally, how hydrogels can enable an “all-in-one platform” to play a key role in cancer therapy, regenerative medicine, and the treatment of inflammatory, degenerative, genetic, and metabolic diseases is being looked forward to.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号